Journal Information
Vol. 30. Issue 10.
Pages 763-769 (October 2011)
Vol. 30. Issue 10.
Pages 763-769 (October 2011)
Artigo original
Open Access
Efeito anti-inflamatório da lipoproteína de alta densidade no sistema cardiovascular de camundongos hiperlipidêmicos
Anti-inflammatory effect of high-density lipoprotein on the cardiovascular system of hyperlipidemic mice
Visits
10739
José Antonio D. Garciaa,
Corresponding author
jadgarcia@uol.com.br

Autor para correspondência.
, Ciderléia Castro de Limaa, Luiza B. Messoraa, Aline F. Cruzb, Ana P.S. Marquesb, Talita P. Simãob, Evelise Aline Soaresa, M. Cristina Costa Rescka, Erika K. Incerpic, Nelma de Mello Oliveiraa, Leandro dos Santosa
a Núcleo de pesquisa em farmacologia e cirurgia experimental da Universidade José do Rosário Vellano, UNIFENAS, Alfenas, Brasil
b Graduadas do curso de Enfermagem, UNIFENAS, Alfenas, Brasil
c Médica Veterinária responsável pelo Biotério da Universidade Federal de Alfenas, Unifal, Alfenas, Brasil
This item has received

Under a Creative Commons license
Article information
Resumo
Fundamento

Camundongos knouckout para o gene do receptor de lipoproteína de baixa densidade (LDLr−/−) são hiperlipidêmicos espontâneos e resistentes ao desenvolvimento de lesões neointimais.

Objetivos

O presente estudo teve como objetivo determinar o fator que previne o processo inflamatório, as lesões neointimais cardiovasculares e a resistência insulínica nos camundongos LDLr−/−.

Material e métodos

Utilizaram-se três grupos experimentais de camundongos machos com três meses de idade: Grupo WT, camundongos selvagens; Grupo S, camundongos LDLr−/− que receberam ração padrão; Grupo HL, camundongos LDLr−/− que receberam ração hiperlipídica. Após 15 dias, o sangue foi coletado para análise plasmática dos lipídeos, glicose e insulina. O índice de Homa foi calculado para determinar a resistência à insulina. O coração e aorta foram removidos e processados histologicamente. Cortes histológicos do coração foram processados imunoistoquimicamente com anticorpo anti-CD40L para avaliar a presença de processo inflamatório. Cortes histológicos das artérias foram corados com hematoxilina/eosina e picrosírius red para avaliar alterações morfológicas e morfométricas.

Resultados

Os camundongos S foram resistentes ao processo inflamatório, caracterizado por baixa imunorreatividade para o CD40L, com níveis plasmáticos de HDL elevados, e não desenvolveram resistência insulínica, mesmo com hiperlipidemia moderada em relação aos WT. Os camundongos HL apresentaram uma hiperlipidemia grave, aumento na imunorreatividade cardíaca para o CD40L, pronunciadas alterações morfológicas na parede da aorta e resistência insulínica, associadas a um decréscimo nos níveis plasmáticos do HDL em relação aos S. Esta hiperlipidemia grave dos camundongos HL pode ser considerada o fator metabólico indutor do maior estresse oxidativo no sistema cardiovascular, aumentando a peroxidação lipídica da molécula de HDL e consequentemente sua remoção hepática, com consequente diminuição dos níveis plasmáticos do HDL.

Conclusão

O nível plasmático elevado de HDL é o fator protetor contra o desenvolvimento de processos inflamatórios cardiovasculares e resistência insulínica nos camundongos LDLr−/−, impedindo o desenvolvimento das lesões neointimais.

Palavras-chave:
HDL
Inflamação
Hiperinsulinemia
Sistema cardiovascular
Dislipidemia
Abstract
Introduction

LDLr−/− mice are spontaneously hyperlipidemic and resistant to the development of neointimal lesions.

Objectives

This study aimed to determine the factor that prevents the inflammatory process and neointimal lesions and insulin resistance in LDLr−/− mice.

Methods

Three groups of 3-month-old male mice were used: wild-type mice (WT group); LDLr−/− mice fed a standard diet (S group); and LDLr−/− mice fed a high-fat diet (HF group). After 15 days, blood was collected for analysis of plasma lipids, glucose and insulin. The HOMA index was calculated to determine insulin resistance. The heart and aorta were removed for histological study. Histological sections of the heart were processed immunohistochemically with anti-CD40L antibodies to evaluate the inflammatory process. Histological sections of the aorta were stained with hematoxylin/eosin and picrosirius red to assess morphological and morphometric alterations.

Results

The S mice were resistant to the inflammatory process, as shown by low immunoreactivity to CD40L, with high plasma HDL levels, and did not develop insulin resistance, even with moderate hyperlipidemia compared to WT. The HF mice showed severe hyperlipidemia, increased cardiac immunoreactivity to CD40L, pronounced morphological changes in the aortic wall and insulin resistance, associated with a decrease in plasma HDL levels, compared to S. This severe hyperlipidemia in the HF mice can be considered the major metabolic factor inducing oxidative stress in the cardiovascular system, increasing the lipid peroxidation of HDL and hence its removal by the liver, with consequent lowering of plasma HDL levels.

Conclusion

High HDL plasma levels are a protective factor against the development of cardiovascular inflammation and insulin resistance in LDLr−/− mice, preventing the development of neointimal lesions.

Keywords:
HDL
Inflammation
Hyperinsulinemia
Cardiovascular system
Dyslipidemia
Full text is only aviable in PDF
Bibliografia
[1.]
P. Libby, P. Ridker, A. Maseri.
Inflammation and atherosclerosis.
Circulation, 105 (2002), pp. 1135-1143
[2.]
A. Lusis.
Atherosclerosis.
Nature, 407 (2000), pp. 333-341
[3.]
A. Zirlik, S.M. Abdullah, N. Gerdes, et al.
Interleukin-18, the metabolic syndrome, and subclinical atherosclerosis: results from the Dallas Heart Study.
Arterioscler Thromb Vasc Biol, 27 (2007), pp. 2043-2049
[4.]
J.A. Garcia, L. Dos Santos, A.L. Moura, et al.
S-nitroso-Nacetylcysteine (SNAC) prevents myocardial alterations in hypercholesterolemic LDL receptor knockout mice by antiinflammatory action.
J Cardiovasc Pharmacol, 51 (2008), pp. 78-85
[5.]
R.N. Ross, J. Engel.
Atherosclerosis: an inflammatory disease.
N Engl J Med, 340 (1999), pp. 115-126
[6.]
D. Vishnevetsk, V.A. Kiyanista, P.J. Gandhi.
CD40 ligand: a novel target in the fight against cardiovascular disease.
Ann Pharmacother, 38 (2004), pp. 1500-1508
[7.]
C.M. Gelbmann, S.N. Leeb, D. Vogl, et al.
Inducible CD40 expression mediates NFKappaB activation and cytokine secretion in human colonic fibroblasts.
Gut, 52 (2003), pp. 1448-1456
[8.]
E. Vellaichamy, N.K. Sommana, K.N. Pandey.
Reduced CGMP signaling activates NF-KappaB in hypertrophied hearts of mice lacking natriuretic peptide receptor-A.
Biochem Biophys Res Commun, 327 (2005), pp. 106-111
[9.]
H. Tilg, A.R. Moschem.
Inflammatory mechanisms in the regulation of insulin resistance.
Mol Med, 14 (2008), pp. 222-231
[10.]
C.C.L. Wang, M.L. Goalstone, B. Draznin.
Molecular mechanisms of insulin resistance that impact cardiovascular biology.
Diabetes, 53 (2004), pp. 2735-2740
[11.]
W.P. Castelli, J.T. Doyle, T. Gordon, et al.
HDL cholesterol and other lipids in coronary heart disease. The Cooperative Lipoprotein Phenotyping Study.
Circulation, 55 (1977), pp. 767-772
[12.]
J. Tian, H. Pei, J.M. Sanders, et al.
Hyperlipidemia is a major determinant of neointimal formation in LDL receptor-deficient mice.
Biochem Biophys Res Commun, 345 (2006), pp. 1004-1009
[13.]
M.H. Krieger, K.F.R. Santos, S.M. Shishido, et al.
Antiatherogenic effects of S-nitroso-N-acetylcysteine in hypercholesterolemic LDL receptor knockout mice.
Nitric Oxide, 14 (2006), pp. 12-20
[14.]
R. Trinder.
Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor.
Ann Clin Biochem, 6 (1969), pp. 24-27
[15.]
C.C. Hedrick, L.W. Castellani, H. Wong, et al.
In vivo interactions of apoA-II, apoA-I, and hepatic lipase contributing to HDL structure and antiatherogenic functions.
J. Lipid Res., 42 (2001), pp. 563-570
[16.]
W.T. Friedewald, R.I. Levy, D.S. Fredrickson.
Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without the use of preparatory ultracentrifugation.
Clin Chem, 18 (1972), pp. 499-502
[17.]
L.C. Junqueira, G. Bignolas, R.R. Brentani, et al.
Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections.
Histochem J, 11 (1979), pp. 447-455
[18.]
A.T. Armstrong, P.F. Binkley, P.B. Baker, et al.
Quantitative investigation of cardiomyocyte hypertrophy and myocardial fibrosis over 6 years after cardiac transplantation.
J Am Coll Cardiol, 32 (1998), pp. 704-710
[19.]
Y. Zhang, I. Zanotti, M.P. Reilly, et al.
Overexpression of apoliprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo.
Circulation, 108 (2003), pp. 661-663
[20.]
M. Navab, G.M. Ananthramaiah, S.T. Reddy, et al.
The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL.
J Lipid Res, 45 (2004), pp. 993-1007
[21.]
M. Navab, S.Y. Hama, C.J. Cooke, et al.
Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1.
J Lipid Res, 41 (2000), pp. 1481-1494
[22.]
B. Mackness, D. Hine, Y. Liu, et al.
Paraoxonase-1 inhibits oxidised LDL-induced MCP-1 production by endothelial cells.
Biochem Biophys Res Commun, 318 (2004), pp. 680-683
[23.]
S.T. Reddy, D.J. Wadleigh, V. Grijalva, et al.
Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids.
Arterioscler Thromb Vasc Biol, 21 (2001), pp. 542-547
[24.]
P. Holvoet.
Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease.
Verh K Acad Geneeskd Belg, 70 (2008), pp. 193-219
[25.]
P. Xia, M.A. Vadas, K.A. Rye, et al.
High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL.
J Biol Chem, 274 (1999), pp. 33143-33147
[26.]
G.P. Sykiotis, A.G. Papavassiliou.
Serine phosphorylation of insulin receptor substrate-1: a novel target for the reversal of insulin resistance.
Mol Endocrinol, 15 (2001), pp. 1864-1869
[27.]
G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman.
Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance.
Science, 259 (1993), pp. 87-91
[28.]
R. Barbuio, M. Milanski, M.B. Bertolo, et al.
Infliximab reverses steatosis and improves insulin signal transduction in liver of rats fed a high-fat diet.
J Endocrinol, 194 (2007), pp. 539-550
[29.]
C. Urbich, E. Dernbach, A. Aicher, et al.
CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species.
Circulation, 106 (2002), pp. 981-986
[30.]
J. Christison, A. Karjalainen, J. Brauman, et al.
Rapid reduction and removal of HDL- but not LDL-associated cholesteryl ester hydroperoxides by rat liver perfused in situ.
Biochem J, 314 (1996), pp. 739-742
Copyright © 2011. Sociedade Portuguesa de Cardiologia
Download PDF
Idiomas
Revista Portuguesa de Cardiologia (English edition)
Article options
Tools
en pt

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

By checking that you are a health professional, you are stating that you are aware and accept that the Portuguese Journal of Cardiology (RPC) is the Data Controller that processes the personal information of users of its website, with its registered office at Campo Grande, n.º 28, 13.º, 1700-093 Lisbon, telephone 217 970 685 and 217 817 630, fax 217 931 095, and email revista@spc.pt. I declare for all purposes that the information provided herein is accurate and correct.