was read the article
array:25 [ "pii" => "S2174204916000258" "issn" => "21742049" "doi" => "10.1016/j.repce.2015.09.009" "estado" => "S300" "fechaPublicacion" => "2016-02-01" "aid" => "758" "copyright" => "Sociedade Portuguesa de Cardiologia" "copyrightAnyo" => "2016" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Rev Port Cardiol. 2016;35:83-91" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 2941 "formatos" => array:3 [ "EPUB" => 167 "HTML" => 2245 "PDF" => 529 ] ] "Traduccion" => array:1 [ "en" => array:20 [ "pii" => "S0870255115003625" "issn" => "08702551" "doi" => "10.1016/j.repc.2015.09.017" "estado" => "S300" "fechaPublicacion" => "2016-02-01" "aid" => "758" "copyright" => "Sociedade Portuguesa de Cardiologia" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Rev Port Cardiol. 2016;35:83-91" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 3608 "formatos" => array:3 [ "EPUB" => 183 "HTML" => 2877 "PDF" => 548 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Left atrial ejection force correlates with left atrial strain and volume-based functional properties as assessed by three-dimensional speckle tracking echocardiography (from the MAGYAR-Healthy Study)" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "pt" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "83" "paginaFinal" => "91" ] ] "titulosAlternativos" => array:1 [ "pt" => array:1 [ "titulo" => "Força de ejeção correlacionada com pressão auricular esquerda e propriedades funcionais de volume conforme avaliado na ecocardiografia tridimensional de <span class="elsevierStyleItalic">speckle tracking</span> (Estudo MAGYAR)" ] ] "contieneResumen" => array:2 [ "en" => true "pt" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 2177 "Ancho" => 2906 "Tamanyo" => 376663 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Interobserver (upper graphs) and intraobserver (lower graphs) agreements and correlations for measuring end-systolic mitral annulus diameter by three-dimensional speckle tracking echocardiography are presented. 3DSTE: three-dimensional speckle tracking echocardiography; MAD: 3DSTE-derived mitral annulus diameter; obs: observer.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Györgyike Ágnes Piros, Péter Domsik, Anita Kalapos, Csaba Lengyel, Andrea Orosz, Tamás Forster, Attila Nemes" "autores" => array:7 [ 0 => array:2 [ "nombre" => "Györgyike Ágnes" "apellidos" => "Piros" ] 1 => array:2 [ "nombre" => "Péter" "apellidos" => "Domsik" ] 2 => array:2 [ "nombre" => "Anita" "apellidos" => "Kalapos" ] 3 => array:2 [ "nombre" => "Csaba" "apellidos" => "Lengyel" ] 4 => array:2 [ "nombre" => "Andrea" "apellidos" => "Orosz" ] 5 => array:2 [ "nombre" => "Tamás" "apellidos" => "Forster" ] 6 => array:2 [ "nombre" => "Attila" "apellidos" => "Nemes" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2174204916000258" "doi" => "10.1016/j.repce.2015.09.009" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2174204916000258?idApp=UINPBA00004E" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0870255115003625?idApp=UINPBA00004E" "url" => "/08702551/0000003500000002/v1_201602130045/S0870255115003625/v1_201602130045/en/main.assets" ] ] "itemSiguiente" => array:20 [ "pii" => "S217420491600026X" "issn" => "21742049" "doi" => "10.1016/j.repce.2015.07.018" "estado" => "S300" "fechaPublicacion" => "2016-02-01" "aid" => "767" "copyright" => "Sociedade Portuguesa de Cardiologia" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Rev Port Cardiol. 2016;35:93-7" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 4579 "formatos" => array:3 [ "EPUB" => 170 "HTML" => 3836 "PDF" => 573 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Translation and cultural adaptation of the Hill-Bone Compliance to High Blood Pressure Therapy Scale to Portuguese" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "pt" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "93" "paginaFinal" => "97" ] ] "titulosAlternativos" => array:1 [ "pt" => array:1 [ "titulo" => "Tradução e adaptação cultural do Questionário <span class="elsevierStyleItalic">Hill-Bone</span> de Adesão à Terapêutica Antihipertensora para Português" ] ] "contieneResumen" => array:2 [ "en" => true "pt" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1780 "Ancho" => 2283 "Tamanyo" => 481518 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Original Hill-Bone Compliance to High Blood Pressure Therapy Scale.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Luís Nogueira-Silva, Ana Sá-Sousa, Maria João Lima, Agostinho Monteiro, Cheryl Dennison-Himmelfarb, João A. Fonseca" "autores" => array:6 [ 0 => array:2 [ "nombre" => "Luís" "apellidos" => "Nogueira-Silva" ] 1 => array:2 [ "nombre" => "Ana" "apellidos" => "Sá-Sousa" ] 2 => array:2 [ "nombre" => "Maria João" "apellidos" => "Lima" ] 3 => array:2 [ "nombre" => "Agostinho" "apellidos" => "Monteiro" ] 4 => array:2 [ "nombre" => "Cheryl" "apellidos" => "Dennison-Himmelfarb" ] 5 => array:2 [ "nombre" => "João A." "apellidos" => "Fonseca" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S0870255116000081" "doi" => "10.1016/j.repc.2015.07.013" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0870255116000081?idApp=UINPBA00004E" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S217420491600026X?idApp=UINPBA00004E" "url" => "/21742049/0000003500000002/v2_201703220311/S217420491600026X/v2_201703220311/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2174204916000222" "issn" => "21742049" "doi" => "10.1016/j.repce.2016.01.011" "estado" => "S300" "fechaPublicacion" => "2016-02-01" "aid" => "760" "documento" => "simple-article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "dis" "cita" => "Rev Port Cardiol. 2016;35:79-81" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 2980 "formatos" => array:3 [ "EPUB" => 147 "HTML" => 2322 "PDF" => 511 ] ] "en" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Editorial comment</span>" "titulo" => "Risk assessment in percutaneous coronary intervention and appropriate use criteria: Manual or automatic?" "tienePdf" => "en" "tieneTextoCompleto" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "79" "paginaFinal" => "81" ] ] "titulosAlternativos" => array:1 [ "pt" => array:1 [ "titulo" => "Avaliação do risco e uso apropriado da intervenção coronária percutânea. Portagem manual ou via verde eletrónica automática?" ] ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Rui Campante Teles" "autores" => array:1 [ 0 => array:2 [ "nombre" => "Rui" "apellidos" => "Campante Teles" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "pt" => array:9 [ "pii" => "S0870255115003649" "doi" => "10.1016/j.repc.2015.12.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "pt" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0870255115003649?idApp=UINPBA00004E" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2174204916000222?idApp=UINPBA00004E" "url" => "/21742049/0000003500000002/v2_201703220311/S2174204916000222/v2_201703220311/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Left atrial ejection force correlates with left atrial strain and volume-based functional properties as assessed by three-dimensional speckle tracking echocardiography (from the MAGYAR-Healthy Study)" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "83" "paginaFinal" => "91" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Györgyike Ágnes Piros, Péter Domsik, Anita Kalapos, Csaba Lengyel, Andrea Orosz, Tamás Forster, Attila Nemes" "autores" => array:7 [ 0 => array:3 [ "nombre" => "Györgyike Ágnes" "apellidos" => "Piros" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Péter" "apellidos" => "Domsik" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "Anita" "apellidos" => "Kalapos" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "Csaba" "apellidos" => "Lengyel" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 4 => array:3 [ "nombre" => "Andrea" "apellidos" => "Orosz" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 5 => array:3 [ "nombre" => "Tamás" "apellidos" => "Forster" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 6 => array:4 [ "nombre" => "Attila" "apellidos" => "Nemes" "email" => array:1 [ 0 => "nemes.attila@med.u-szeged.hu" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "2nd Department of Medicine and Cardiology Centre, Medical Faculty, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "1st Department of Medicine, Medical Faculty, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Department of Pharmacology and Pharmacotherapy, Medical Faculty, University of Szeged, Szeged, Hungary" "etiqueta" => "c" "identificador" => "aff0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "pt" => array:1 [ "titulo" => "Força de ejeção correlacionada com pressão auricular esquerda e propriedades funcionais de volume conforme avaliado na ecocardiografia tridimensional de <span class="elsevierStyleItalic">speckle tracking</span> (Estudo MAGYAR)" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2202 "Ancho" => 3193 "Tamanyo" => 507299 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">From the three-dimensional echocardiographic dataset, the mitral annulus (MA) can be obtained by optimizing cross-sectional planes in apical 4-chamber (A) and 2-chamber (B) views, demonstrating an optimal MA image on cross-sectional view (C7). Using Doppler-derived mitral inflow peak A wave velocity, the left atrial ejection force (LAEF) can be calculated. E and A: Doppler-derived mitral inflow velocities; LA: left atrium; LV: left ventricle; MA: mitral annulus; RA: right atrium; RV: right ventricle.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Three-dimensional (3D) echocardiography coupled with speckle tracking capability is a novel approach that may become a powerful methodology for the assessment of left atrial (LA) volumes and function without geometrical assumptions.<a class="elsevierStyleCrossRefs" href="#bib0090"><span class="elsevierStyleSup">1,2</span></a> Despite basic differences, volumetric real-time 3D echocardiography (RT3DE) and strain-based 3D speckle tracking echocardiography (3DSTE) were found to be comparable, reproducible and interchangeable for quantification of LA dimensions and functional properties.<a class="elsevierStyleCrossRef" href="#bib0100"><span class="elsevierStyleSup">3</span></a> It is well known that LA function in the cardiac cycle is a complex process that includes storing of pulmonary venous return during left ventricular (LV) contraction and isovolumetric relaxation in systole (reservoir function), transfer of blood passively into the LV in early diastole (conduit function), and active contraction at late diastole (booster pump function).<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">4</span></a> In earlier studies 3DSTE was used for detailed assessment of all LA features including volume measurements,<a class="elsevierStyleCrossRefs" href="#bib0110"><span class="elsevierStyleSup">5–9</span></a> strain assessment<a class="elsevierStyleCrossRefs" href="#bib0120"><span class="elsevierStyleSup">7–11</span></a> and calculation of LA ejection force (LAEF).<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">12</span></a> LA strain and volume-based functional parameters originate from the same 3D dataset, but assessment of LAEF requires more data including measurement of mitral annular dimensions and Doppler-derived inflow velocities. However, the relationship between these functional properties has never been assessed. Therefore, the present study was designed to find correlations between LAEF and LA volume-based functional properties and strain parameters in healthy subjects.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Patients and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Patient population</span><p id="par0010" class="elsevierStylePara elsevierViewall">The study group consisted of 34 healthy subjects (mean age: 36.1±11.2 years, 15 men) in sinus rhythm. None had known disease or any factor which could theoretically affect the results. Data on these subjects were taken from the MAGYAR-Healthy study (Motion Analysis of the heart and Great vessels bY three-dimensionAl speckle tRacking echocardiography in Healthy subjects) with the aim of clarifying the diagnostic and prognostic significance of 3DSTE-derived volume, strain, rotation and dyssynchrony parameters in healthy volunteers. Informed consent was obtained from all subjects. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the local human research ethics committee.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Three-dimensional speckle tracking echocardiography</span><p id="par0015" class="elsevierStylePara elsevierViewall">All 3DSTE studies were performed with a Toshiba Artida echocardiograph (Toshiba Medical Systems, Tokyo, Japan) using a 1–4 MHz PST-25SX matrix phased-array transducer.<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">2</span></a> Acquisition of a full-volume 3D dataset required smaller wedge-shaped subvolumes from six consecutive cardiac cycles obtained during a single breathhold, which were then combined to provide the larger pyramidal 3D volume. LA quantification was performed using 3D Wall Motion Tracking software, version 2.7 (Toshiba Medical Systems, Tokyo, Japan). The 3D datasets were displayed in five different cross-sections comprising apical 2- (AP2CH) and 4-chamber (AP4CH) views and three standard short-axis views at different LA levels from the base to the apex. The orientation of the long axis of the AP2CH and AP4CH views was determined by positioning the main axis line to pass near the center of the LA cavity. The three short-axis views were defined by positioning the lines in AP2CH and AP4CH views at each level perpendicular to the LA long axis. The LA cavity was traced on the endocardium in AP2CH and AP4CH views starting at the edge of the septal mitral annulus (at the origin of the anterior mitral leaflet), then markers were placed in a counterclockwise rotation around the LA to the lateral mitral valve ring (to the origin of the posterior mitral leaflet). The LA epicardial border was manually adjusted. After detection of boundaries at the end-diastolic reference frame, wall motion tracking was then automatically performed through the entire cardiac cycle. A 3D cast together with volumetric and functional parameters of the LA were then generated (<a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a>).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Three-dimensional speckle tracking echocardiography for left atrial volume measurements</span><p id="par0020" class="elsevierStylePara elsevierViewall">From the 3D model of the LA, maximum LA volume (at end-systole, largest LA volume before mitral valve opening [V<span class="elsevierStyleInf">max</span>]), minimum LA volume (at end-diastole, smallest LA volume before mitral valve closure [V<span class="elsevierStyleInf">min</span>]) and LA volume before atrial contraction (at time of P wave on ECG [V<span class="elsevierStyleInf">preA</span>]) were calculated (<a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a>).<a class="elsevierStyleCrossRefs" href="#bib0110"><span class="elsevierStyleSup">5–9</span></a> To characterize the reservoir, conduit and active contraction phases of LA function, stroke volumes (SV) and emptying fractions (EF) were measured from the three volumes using the following equations:</p><p id="par0025" class="elsevierStylePara elsevierViewall">Reservoir function:<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">-</span><p id="par0030" class="elsevierStylePara elsevierViewall">Total atrial stroke volume (TASV): V<span class="elsevierStyleInf">max</span>−V<span class="elsevierStyleInf">min</span></p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">-</span><p id="par0035" class="elsevierStylePara elsevierViewall">Total atrial emptying fraction (TAEF): TASV/V<span class="elsevierStyleInf">max</span>×100</p></li></ul></p><p id="par0040" class="elsevierStylePara elsevierViewall">Conduit function:<ul class="elsevierStyleList" id="lis0010"><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">-</span><p id="par0045" class="elsevierStylePara elsevierViewall">Passive atrial stroke volume (PASV): V<span class="elsevierStyleInf">max</span>−V<span class="elsevierStyleInf">preA</span></p></li><li class="elsevierStyleListItem" id="lsti0020"><span class="elsevierStyleLabel">-</span><p id="par0050" class="elsevierStylePara elsevierViewall">Passive atrial emptying fraction (PAEF): PASV/V<span class="elsevierStyleInf">max</span>×100</p></li></ul></p><p id="par0055" class="elsevierStylePara elsevierViewall">Active contraction:<ul class="elsevierStyleList" id="lis0015"><li class="elsevierStyleListItem" id="lsti0025"><span class="elsevierStyleLabel">-</span><p id="par0060" class="elsevierStylePara elsevierViewall">Active atrial stroke volume (AASV): V<span class="elsevierStyleInf">preA</span>−V<span class="elsevierStyleInf">min</span></p></li><li class="elsevierStyleListItem" id="lsti0030"><span class="elsevierStyleLabel">-</span><p id="par0065" class="elsevierStylePara elsevierViewall">Active atrial emptying fraction (AAEF): AASV/V<span class="elsevierStyleInf">preA</span>×100.</p></li></ul></p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Three-dimensional speckle tracking echocardiography for left atrial strain measurements</span><p id="par0070" class="elsevierStylePara elsevierViewall">The main advantage of 3DSTE is that from the same 3D model of the LA, several functional parameters including strains can be easily measured.<a class="elsevierStyleCrossRefs" href="#bib0120"><span class="elsevierStyleSup">7–11</span></a> On the basis of one-directional radial, longitudinal and circumferential strains, area strain (ratio of endocardial area change during the cardiac cycle) and 3D strain (strain in the wall thickening direction, combination of one-directional strains) can also be calculated. Global peak strains (characterizing LA reservoir function) and global strains at atrial contraction (characterizing LA active contraction function) were measured for each subject (<a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a>).</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Three-dimensional speckle tracking echocardiography for left atrial ejection force measurements</span><p id="par0075" class="elsevierStylePara elsevierViewall">There is a third way to analyze LA function, by calculating LAEF. According to Newton's second law of motion, the force generated by the LA in its active contraction phase can be calculated using the following equation: LAEF=0.5×1.06×(MAD or MAA)×V<span class="elsevierStyleSup">2</span>, where 0.5 is a coefficient, 1.06 g/cm<span class="elsevierStyleSup">3</span> is the blood density, MAD is the mitral annulus diameter, MAA is the mitral annulus area, and V is the peak A wave velocity.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">13</span></a> From the same 3D echocardiographic dataset, the mitral annulus (MA) can be obtained by optimizing cross-sectional planes on the endpoints of the MA in AP4CH and AP2CH views<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">12</span></a> (<a class="elsevierStyleCrossRef" href="#fig0010">Figure 2</a>). MAD is then defined as the perpendicular line drawn from the top of the MA curvature to the middle of the straight MA border, while MAA can also be measured using planimetry. For measurement of LAEF, diastolic MAD and MAA data were used.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Statistical analysis</span><p id="par0080" class="elsevierStylePara elsevierViewall">Continuous variables are expressed as mean values ± standard deviation, while categorical data are summarized as percentages. A p value of <0.05 was considered to indicate statistical significance. Pearson's coefficient was used for correlations. Recently, intra- and interobserver agreement for LA volumes and functional properties were assessed in papers based on the MAGYAR-Healthy and MAGYAR-Path studies.<a class="elsevierStyleCrossRefs" href="#bib0115"><span class="elsevierStyleSup">6,8</span></a> However, 3DSTE-derived MAD and MAA were not assessed. Intra- and interobserver agreements were studied according to Bland and Altman's method.<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">14</span></a> All calculations were performed with commercially available software (MedCalc, Mariakerke, Belgium).</p></span></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Results</span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Clinical and echocardiographic data</span><p id="par0085" class="elsevierStylePara elsevierViewall">Baseline clinical and echocardiographic data for the study population are presented in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>. All two-dimensional (2D) echocardiographic and 3DSTE-derived data were in normal ranges in this healthy population.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Left atrial functional parameters</span><p id="par0090" class="elsevierStylePara elsevierViewall">Volume-based and strain parameters derived from 3DSTE characterizing all phases of LA function together with LAEF are presented in <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>.</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Correlations</span><p id="par0095" class="elsevierStylePara elsevierViewall">Both MAD- and MAA-based LAEF showed correlations with global 3D strain at atrial contraction, and MAD-based LAEF correlated with AAEF (<a class="elsevierStyleCrossRef" href="#tbl0015">Table 3</a>). Although LAEF is a characteristic of LA booster pump function, correlations could be demonstrated between LAEF and volume-based and strain characteristics of LA reservoir function, as well global peak strains, TASV and TAEF. No correlation could be demonstrated between LAEF and parameters characterizing LA conduit function (PASV, PAEF).</p><elsevierMultimedia ident="tbl0015"></elsevierMultimedia></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Reproducibility of mitral annular diameter and mitral annular area measurements</span><p id="par0100" class="elsevierStylePara elsevierViewall">Reproducibility measurements were performed in 17 healthy controls. The mean ± standard deviation differences in values obtained by two observers for the measurements of 3DSTE-derived diastolic and systolic MAD and diastolic and systolic MAA were −0.02±0.43 cm, 0.02±0.43 cm, −0.06±1.49 cm<span class="elsevierStyleSup">2</span> and 0.07±1.02 cm<span class="elsevierStyleSup">2</span>, respectively. Correlation coefficients between measurements of two observers were 0.77, 0.79, 0.89 and 0.89 (p=0.0003, 0.0002, <0.0001 and <0.0001), respectively (interobserver agreement) (<a class="elsevierStyleCrossRefs" href="#fig0010">Figures 2–5</a>). The mean ± standard deviation differences in values obtained in two measurements by the same observer for 3DSTE-derived diastolic and systolic MAD and diastolic and systolic MAA were 0.03±0.38 cm, −0.01±0.34 cm, 0.05±0.87 cm<span class="elsevierStyleSup">2</span>, and 0.04±0.97 cm<span class="elsevierStyleSup">2</span>, respectively. Correlation coefficients between these independent measurements by the same observer were 0.78, 0.83, 0.96 and 0.90 (p=0.0002, <0.0001, <0.0001 and <0.0001), respectively (intraobserver agreement) (<a class="elsevierStyleCrossRefs" href="#fig0015">Figures 3–6</a>).</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><elsevierMultimedia ident="fig0020"></elsevierMultimedia><elsevierMultimedia ident="fig0025"></elsevierMultimedia><elsevierMultimedia ident="fig0030"></elsevierMultimedia></span></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Discussion</span><p id="par0105" class="elsevierStylePara elsevierViewall">The newly developed 3DSTE is a non-invasive imaging methodology with chamber quantification capability based on block-matching of the myocardial speckles of the endocardial border during their frame-to-frame motion.<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">2</span></a> The usefulness of 3DSTE for LA volumetric assessments has been demonstrated and validated by 2D echocardiography,<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">6</span></a> two-dimensional speckle tracking echocardiography (2DSTE),<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">5</span></a> RT3DE<a class="elsevierStyleCrossRef" href="#bib0100"><span class="elsevierStyleSup">3</span></a> and computed tomography.<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">5</span></a> Moreover, 3DSTE-derived LA strain measurements have also been reported<a class="elsevierStyleCrossRefs" href="#bib0120"><span class="elsevierStyleSup">7–11</span></a> and validated by 2DSTE.<a class="elsevierStyleCrossRef" href="#bib0135"><span class="elsevierStyleSup">10</span></a></p><p id="par0110" class="elsevierStylePara elsevierViewall">In most cases, volumetric and strain assessments can be performed simultaneously using the same 3D model of the LA. However, there is a third way to characterize LA function during the same examination, by measuring LAEF, the force exerted by the LA to accelerate blood into the LV during atrial systole. LAEF is based on classic Newtonian mechanics and is a potentially useful index for assessing atrial contribution to diastolic performance.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">13</span></a> Compared to 2D imaging, both 3D echocardiographic techniques, RT3DE<a class="elsevierStyleCrossRefs" href="#bib0160"><span class="elsevierStyleSup">15–17</span></a> and 3DSTE,<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">12</span></a> have been demonstrated to be practicable in assessing LAEF using Doppler-derived mitral inflow A velocity. However, to the best of the authors’ knowledge this is the first time possible correlations have been examined between 3DSTE-derived LAEF and LA strain and volume-based functional properties to assess cardiac systolic and diastolic function in healthy subjects.</p><p id="par0115" class="elsevierStylePara elsevierViewall">In a recently published paper from the MAGYAR-Healthy Study, 3DSTE appeared to be feasible in detecting cyclic changes in LA volume, and calculation of its functional properties was comparable to 2D echocardiography. Good correlations were found between the two techniques for LA volumetric data and volume-based functional properties.<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">6</span></a> Moreover, excellent intra- and interobserver agreement were demonstrated for 3DSTE-derived volumetric<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">6</span></a> and strain data.<a class="elsevierStyleCrossRefs" href="#bib0115"><span class="elsevierStyleSup">6,8</span></a> The results of the present study extend our knowledge, demonstrating the ability of 3DSTE to reproducibly assess MAD and MAA and allowing simple calculation of LAEF.</p><p id="par0120" class="elsevierStylePara elsevierViewall">The study reported here is the first to demonstrate correlations between LAEF and 3DSTE-derived volume-based and strain parameters featuring systolic LA reservoir and late diastolic LA booster pump phases calculated from the same 3D model of the LA. No relationships could be demonstrated between LAEF and functional properties of early diastole (LA conduit function). The results of the present study highlight several important points. Firstly, 3DSTE appears to be a simple, non-invasive technology that enables complex evaluation of LA function: all LA functions, including systolic reservoir, early diastolic conduit and late diastolic booster pump (or active contraction) phases, can be assessed at the same time in detail. Secondly, several volume-based and strain parameters can be calculated from the same 3D model of the LA. The measurement of LAEF requires more data including MAD or MAA and pulsed Doppler-derived mitral inflow A wave. Thirdly, significant correlations can be demonstrated between these functional properties, as demonstrated above. However, further validation studies with other imaging methodologies are warranted to confirm our findings. Moreover, other studies should focus on deeper insights into atrial (patho)physiology, especially in different cardiovascular disorders, using all the methodologies detailed above.</p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Limitations</span><p id="par0125" class="elsevierStylePara elsevierViewall">In agreement with the available literature, the LA appendage and pulmonary veins were excluded from evaluations. Although most patients had far from optimal image quality due to low temporal and spatial resolutions, none of them were excluded from the analyses, but could theoretically affect the results. Only a limited number of healthy volunteers from a single center were examined and the measurements were made by a single observer (DP).</p></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Conclusions</span><p id="par0130" class="elsevierStylePara elsevierViewall">Complex LA functional assessment can be provided by 3DSTE, including calculation of LAEF and volume-based and strain functional properties, with significant correlations between these parameters.</p></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0145">Conflicts of interest</span><p id="par0135" class="elsevierStylePara elsevierViewall">The authors have no conflicts of interest to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres818330" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction and Objective" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec815360" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres818329" "titulo" => "Resumo" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introdução e objetivos" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusões" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec815361" "titulo" => "Palavras-chave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Patients and methods" "secciones" => array:6 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Patient population" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Three-dimensional speckle tracking echocardiography" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Three-dimensional speckle tracking echocardiography for left atrial volume measurements" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Three-dimensional speckle tracking echocardiography for left atrial strain measurements" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Three-dimensional speckle tracking echocardiography for left atrial ejection force measurements" ] 5 => array:2 [ "identificador" => "sec0040" "titulo" => "Statistical analysis" ] ] ] 6 => array:3 [ "identificador" => "sec0045" "titulo" => "Results" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0050" "titulo" => "Clinical and echocardiographic data" ] 1 => array:2 [ "identificador" => "sec0055" "titulo" => "Left atrial functional parameters" ] 2 => array:2 [ "identificador" => "sec0060" "titulo" => "Correlations" ] 3 => array:2 [ "identificador" => "sec0065" "titulo" => "Reproducibility of mitral annular diameter and mitral annular area measurements" ] ] ] 7 => array:2 [ "identificador" => "sec0070" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0075" "titulo" => "Limitations" ] 9 => array:2 [ "identificador" => "sec0080" "titulo" => "Conclusions" ] 10 => array:2 [ "identificador" => "sec0085" "titulo" => "Conflicts of interest" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2015-03-05" "fechaAceptado" => "2015-09-02" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec815360" "palabras" => array:6 [ 0 => "Correlation" 1 => "Ejection force" 2 => "Left atrium" 3 => "Function" 4 => "Three-dimensional" 5 => "Speckle tracking echocardiography" ] ] ] "pt" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palavras-chave" "identificador" => "xpalclavsec815361" "palabras" => array:6 [ 0 => "Correlação" 1 => "Força de ejeção" 2 => "Aurícula esquerda" 3 => "Função" 4 => "Tridimensional" 5 => "Ecocardiografia de <span class="elsevierStyleItalic">speckle tracking</span>" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Introduction and Objective</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Three-dimensional (3D) speckle tracking echocardiography (3DSTE) is a novel method for assessment of left atrial (LA) volumes and function without geometrical assumptions. 3DSTE allows detailed assessment of LA features including volume measurements, strain assessments and calculation of LA ejection force (LAEF). LA strain and volume-based functional parameters originate from the same 3D dataset, but assessment of LAEF requires more data including measurement of mitral annular dimensions and Doppler-derived inflow velocities. The present study was designed to find correlations between LAEF and 3DSTE-derived LA volume-based functional properties and strain parameters in healthy subjects.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Methods</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">The study population comprised 34 randomly selected healthy subjects (age 36.1±11.2 years, 15 men) in sinus rhythm, all of whom had undergone standard two-dimensional transthoracic Doppler echocardiographic study extended with 3DSTE.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Mitral annulus diameter-based LAEF correlated with global LA peak circumferential (r=0.39, p=0.02), longitudinal (r=0.32, p=0.05) and area (r=0.43, p=0.01) strain, total atrial stroke volume (r=0.30, p=0.05) and total atrial emptying fraction (r=0.31, p=0.05) characterizing (systolic) LA reservoir function and global LA 3D strain at atrial contraction (r=−0.44, p=0.01) and active atrial emptying fraction (r=0.36, p=0.04) characterizing (diastolic) LA contraction function (booster pump phase).</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Complex LA functional assessment can be provided by 3DSTE, including calculation of LAEF and volume-based and strain functional properties, with significant correlations between these parameters.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction and Objective" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "pt" => array:3 [ "titulo" => "Resumo" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Introdução e objetivos</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">A ecocardiografia tridimensional (3D) com <span class="elsevierStyleItalic">speckle tracking</span> (E3DST) é um novo método para avaliação do volume e da função da aurícula esquerda (AE) sem pressupostos geométricos. A E3DST permite a avaliação detalhada das características da AE, incluindo as medições volumétricas, as avaliações da pressão e o cálculo da força de ejeção da AE (FEAE). A força da AE e os parâmetros funcionais baseados no volume são provenientes dos mesmos dados 3D, mas a avaliação da FEAE requer mais dados incluindo a medição das dimensões do anel mitral e das velocidades do fluxo derivado do Doppler. Este estudo foi concebido para encontrar correlações entre a FEAE e a E3DST derivadas das propriedades funcionais baseadas no volume da AE e nos parâmetros de pressão em indivíduos saudáveis.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Métodos</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Este estudo incluiu 34 indivíduos saudáveis selecionados aleatoriamente (36,1 ± 11 anos, 15 homens) em ritmo sinusal, submetidos a estudo ecocardiográfico Doppler bidimensional transtorácico padrão associado a E3DST.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">A FEAE no anel mitral baseada no diámetro correlacionada com o pico global da AE circunferencial (r = 0,39, p = 0,02), longitudinal (r = 0,32, p = 0,05) e área (r = 0,43, p = 0,01) força, volume arterial total de acidente vascular cerebral (r = 0,30, p = 0,05) e fração auricular total de esvaziamento (r = 0,31, p = 0,05) caracterizando a função de reservatório da AE (sistólica) e a força 3D da AE na contração auricular (r = 0,44, p = 0,01) e fração auricular de esvaziamento ativa (r = 0,36, p = 0,04) caracterizando a função da contração da AE (diastólica) (fase da bomba de reforço).</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusões</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">A E3DST podia providenciar a avaliação funcional complexa da AE incluindo o cálculo da FEAE e das propriedades funcionais baseadas no volume e na força com correlações significativas entre estes parâmetros.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introdução e objetivos" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusões" ] ] ] ] "multimedia" => array:9 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2681 "Ancho" => 2816 "Tamanyo" => 564752 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">The three-dimensional echocardiographic dataset is displayed in apical 4-chamber (A) and 2-chamber views (B) and three short-axis views in the basal (C3), mid-atrial (C5), and superior (C7) regions, respectively. Three-dimensional LA cast (D), LA volumetric data, ejection fraction (EF) (E) and global peak longitudinal strain (white arrow) and global longitudinal strain at atrial contraction (dashed arrow) (F) are also presented. LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2202 "Ancho" => 3193 "Tamanyo" => 507299 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">From the three-dimensional echocardiographic dataset, the mitral annulus (MA) can be obtained by optimizing cross-sectional planes in apical 4-chamber (A) and 2-chamber (B) views, demonstrating an optimal MA image on cross-sectional view (C7). Using Doppler-derived mitral inflow peak A wave velocity, the left atrial ejection force (LAEF) can be calculated. E and A: Doppler-derived mitral inflow velocities; LA: left atrium; LV: left ventricle; MA: mitral annulus; RA: right atrium; RV: right ventricle.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 2298 "Ancho" => 3202 "Tamanyo" => 577291 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Interobserver (upper graphs) and intraobserver (lower graphs) agreements and correlations for measuring end-diastolic mitral annulus diameter by three-dimensional speckle tracking echocardiography are presented. 3DSTE: three-dimensional speckle tracking echocardiography; MAD: 3DSTE-derived mitral annulus diameter; obs: observer.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 2162 "Ancho" => 2898 "Tamanyo" => 501964 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Interobserver (upper graphs) and intraobserver (lower graphs) agreements and correlations for measuring end-systolic mitral annulus diameter by three-dimensional speckle tracking echocardiography are presented. 3DSTE: three-dimensional speckle tracking echocardiography; MAD: 3DSTE-derived mitral annulus diameter; obs: observer.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 2456 "Ancho" => 3302 "Tamanyo" => 537673 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Interobserver (upper graphs) and intraobserver (lower graphs) agreements and correlations for measuring end-diastolic mitral annulus area by three-dimensional speckle tracking echocardiography. 3DSTE: three-dimensional speckle tracking echocardiography; MAA: 3DSTE-derived mitral annulus area; obs: observer.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 2412 "Ancho" => 3247 "Tamanyo" => 573825 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Interobserver (upper graphs) and intraobserver (lower graphs) agreements and correlations for measuring end-systolic mitral annulus area by three-dimensional speckle tracking echocardiography. 3DSTE: three-dimensional speckle tracking echocardiography; MAA: 3DSTE-derived mitral annulus area; obs: observer.</p>" ] ] 6 => array:7 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">2D: two-dimensional; 3D: three-dimensional; LA: left atrial; LV: left ventricular.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Age (years)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">36.1±11.2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Male gender (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">15 (44) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="2" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="2" align="left" valign="top"><span class="elsevierStyleItalic">2D echocardiography</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>LA diameter (parasternal long-axis view) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">33.5±3.7 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>LV end-diastolic diameter (mm) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">47.0±6.5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>LV end-diastolic volume (ml) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">99.3±24.6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>LV end-systolic diameter (mm) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">30.3±4.6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>LV end-systolic volume (ml) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">36.2±13.3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Interventricular septum (mm) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">9.7±1.9 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>LV posterior wall (mm) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">10.1±2.1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>LV ejection fraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">63.7±8.2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Mitral E wave \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">74.6±19.7 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Mitral A wave \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">57.9±11.5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>E/A \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">1.44±0.31 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>E/E′ \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">6.21±1.75 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="2" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="2" align="left" valign="top"><span class="elsevierStyleItalic">3D speckle tracking echocardiography</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Maximum LA volume (V<span class="elsevierStyleInf">max</span>) (ml) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">36.6±6.6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Minimum LA volume (V<span class="elsevierStyleInf">min</span>) (ml) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">16.5±5.00 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Pre-atrial contraction LA volume (V<span class="elsevierStyleInf">preA</span>) (ml) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">24.1±6.2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>End-diastolic mitral annulus diameter (cm) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">2.68±0.31 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>End-systolic mitral annulus diameter (cm) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">2.06±0.42 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>End-diastolic mitral annulus area (cm<span class="elsevierStyleSup">2</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">8.20±1.75 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>End-systolic mitral annulus area (cm<span class="elsevierStyleSup">2</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">4.70±0.88 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1375488.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">Clinical, two-dimensional and three-dimensional speckle tracking echocardiographic data of the study population.</p>" ] ] 7 => array:7 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0090" class="elsevierStyleSimplePara elsevierViewall">3DS: three-dimensional strain; AS: area strain; CS: circumferential strain; LAEF: left atrial ejection force; LS: longitudinal strain; MAA: mitral annular area; MAD: mitral annular diameter; RS: radial strain.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Systole \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Reservoir function \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " rowspan="5" align="left" valign="top">Strains</td><td class="td" title="table-entry " align="left" valign="top">Global peak RS (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">−19.4±8.5 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Global peak CS (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">32.4±14.1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Global peak LS (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">27.5±7.7 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Global peak 3DS (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">−11.9±7.3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Global peak AS (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">67.2±25.6 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="2" align="left" valign="top" style="border-bottom: 2px solid black">Volume-based functional properties</td><td class="td" title="table-entry " align="left" valign="top">Total atrial stroke volume (ml) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">20.2±5.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top" style="border-bottom: 2px solid black">Total atrial emptying fraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top" style="border-bottom: 2px solid black">55.2±10.7 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top" style="border-bottom: 2px solid black">Diastole \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top" style="border-bottom: 2px solid black">Conduit function \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="2" align="left" valign="top" style="border-bottom: 2px solid black">Volume-based functional properties</td><td class="td" title="table-entry " align="left" valign="top">Passive atrial stroke volume (ml) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">12.6±4.7 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top" style="border-bottom: 2px solid black">Passive atrial emptying fraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top" style="border-bottom: 2px solid black">34.4±11.2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top" style="border-bottom: 2px solid black">Diastole \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top" style="border-bottom: 2px solid black">Active contraction \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="" valign="top" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="5" align="left" valign="top">Strains</td><td class="td" title="table-entry " align="left" valign="top">Global RS at atrial contraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">−7.7±7.4 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Global LS at atrial contraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">7.7±6.9 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Global CS at atrial contraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">10.8±10.1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Global 3DS at atrial contraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">−6.0±5.2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Global AS at atrial contraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">17.6±15.2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="2" align="left" valign="top">Volume-based functional properties</td><td class="td" title="table-entry " align="left" valign="top">Active atrial stroke volume (ml) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">7.6±2.8 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Active atrial emptying fraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">31.9±9.2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="2" align="left" valign="top">Ejection forces</td><td class="td" title="table-entry " align="left" valign="top">LAEF based on MAD (kdyne) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">5.0±2.1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">LAEF based on MAA (kdyne) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">15.2±7.0 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1375489.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0085" class="elsevierStyleSimplePara elsevierViewall">Characteristics of left atrial function.</p>" ] ] 8 => array:7 [ "identificador" => "tbl0015" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0100" class="elsevierStyleSimplePara elsevierViewall">3DS: three-dimensional strain; AS: area strain; CS: circumferential strain; LAEF: left atrial ejection force; LS: longitudinal strain; MAA: mitral annular area; MAD: mitral annular diameter; RS: radial strain.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">LA function \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Parameters \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Correlation coefficient with LAEF (MAD) \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Correlation coefficient with LAEF (MAA) \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " rowspan="7" align="left" valign="top">Reservoir (systole)</td><td class="td" title="table-entry " align="left" valign="top">Peak RS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−0.22 (p=0.23) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−0.10 (p=0.58) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Peak CS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.39 (p=0.02) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.29 (p=0.11) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Peak LS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.32 (p=0.05) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.24 (p=0.18) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Peak 3DS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−0.14 (p=0.44) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−0.07 (p=0.69) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Peak AS \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.43 (p=0.01) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.31 (p=0.07) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Total atrial stroke volume \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.30 (p=0.05) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.31 (p=0.05) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Total atrial emptying fraction \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.31 (p=0.05) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.25 (p=0.15) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="4" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="2" align="left" valign="top">Conduit (diastole)</td><td class="td" title="table-entry " align="left" valign="top">Passive atrial stroke volume \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.18 (p=0.33) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.26 (p=0.15) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Passive atrial emptying fraction \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.10 (p=0.40) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.14 (p=0.45) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="4" align="left" valign="top"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="table-entry " rowspan="7" align="left" valign="top">Active contraction (diastole)</td><td class="td" title="table-entry " align="left" valign="top">RS at atrial contraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−0.26 (p=0.15) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−0.20 (p=0.26) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">CS at atrial contraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.21 (p=0.26) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.18 (p=0.34) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">LS at atrial contraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−0.12 (p=0.54) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−0.17 (p=0.37) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">3DS at atrial contraction (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−0.44 (p=0.01) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">−0.37 (p=0.03) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">AS at atrial contraction %) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.18 (p=0.32) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.13 (p=0.50) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Active atrial stroke volume \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.26 (p=0.15) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.28 (p=0.12) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top">Active atrial emptying fraction \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.36 (p=0.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.27 (p=0.12) \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1375487.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0095" class="elsevierStyleSimplePara elsevierViewall">Correlations between left atrial ejection force and other characteristics of left atrial function.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:17 [ 0 => array:3 [ "identificador" => "bib0090" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Myocardial mechanics: understanding and applying three-dimensional speckle tracking echocardiography in clinical practice" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "K.A. Ammar" 1 => "T.E. Paterick" 2 => "B.K. Khandheria" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1540-8175.2012.01712.x" "Revista" => array:6 [ "tituloSerie" => "Echocardiography" "fecha" => "2012" "volumen" => "29" "paginaInicial" => "861" "paginaFinal" => "872" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22591237" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0095" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Three-dimensional speckle-tracking echocardiography – a further step in non-invasive three-dimensional cardiac imaging" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A. Nemes" 1 => "A. Kalapos" 2 => "P. Domsik" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1556/OH.2012.29466" "Revista" => array:6 [ "tituloSerie" => "Orv Hetil" "fecha" => "2012" "volumen" => "153" "paginaInicial" => "1570" "paginaFinal" => "1577" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23022880" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0100" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison between direct volumetric and speckle tracking methodologies for left ventricular and left atrial chamber quantification by three-dimensional echocardiography" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S.A. Kleijn" 1 => "M.F. Aly" 2 => "C.B. Terwee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.amjcard.2011.05.042" "Revista" => array:6 [ "tituloSerie" => "Am J Cardiol" "fecha" => "2011" "volumen" => "108" "paginaInicial" => "1038" "paginaFinal" => "1044" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21784385" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0105" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Left atrial function: physiology, assessment, and clinical implications" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "G.G. Blume" 1 => "C.J. Mcleod" 2 => "M.E. Barnes" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/ejechocard/jeq175" "Revista" => array:6 [ "tituloSerie" => "Eur J Echocardiogr" "fecha" => "2011" "volumen" => "12" "paginaInicial" => "421" "paginaFinal" => "430" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21565866" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0110" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quantitative validation of left atrial structure and function by two-dimensional and three-dimensional speckle tracking echocardiography: a comparative study with three-dimensional computed tomography" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "M. Nagaya" 1 => "M. Kawasaki" 2 => "R. Tanaka" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jjcc.2013.03.011" "Revista" => array:6 [ "tituloSerie" => "J Cardiol" "fecha" => "2013" "volumen" => "62" "paginaInicial" => "188" "paginaFinal" => "194" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23672788" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0115" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of three-dimensional speckle-tracking echocardiography and two-dimensional echocardiography for evaluation of left atrial size and function in healthy volunteers (results from the MAGYAR-Healthy study)" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A. Nemes" 1 => "P. Domsik" 2 => "A. Kalapos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/echo.12485" "Revista" => array:6 [ "tituloSerie" => "Echocardiography" "fecha" => "2014" "volumen" => "31" "paginaInicial" => "865" "paginaFinal" => "871" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24341394" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0120" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Three-dimensional speckle tracking echocardiography allows detailed evaluation of left atrial function in hypertrophic cardiomyopathy-insights from the MAGYAR-Path study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "P. Domsik" 1 => "A. Kalapos" 2 => "S. Chadaide" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/echo.12568" "Revista" => array:6 [ "tituloSerie" => "Echocardiography" "fecha" => "2014" "volumen" => "31" "paginaInicial" => "1245" "paginaFinal" => "1252" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24649997" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0125" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "(in press)" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Complex evaluation of left atrial dysfunction in patients with type 1 diabetes mellitus by three-dimensional speckle tracking echocardiography – results from the MAGYAR-Path Study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A. Nemes" 1 => "G.A. Piros" 2 => "C. Lengyel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.5152/AnatolJCardiol.2015.6225" "Revista" => array:2 [ "tituloSerie" => "Anatol J Cardiol" "fecha" => "2016" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0130" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "(in press)" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Left atrial volumetric and strain analysis by three-dimensional speckle tracking echocardiography in noncompaction cardiomyopathy – results from the MAGYAR-Path Study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A. Nemes" 1 => "G.A. Piros" 2 => "P. Domsik" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Hellenic J Cardiol" "fecha" => "2016" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0135" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Assessment of left atrial deformation and synchrony by three-dimensional speckle-tracking echocardiography: comparative studies in healthy subjects and patients with atrial fibrillation" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A. Mochizuki" 1 => "S. Yuda" 2 => "Y. Oi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.echo.2012.10.003" "Revista" => array:6 [ "tituloSerie" => "J Am Soc Echocardiogr" "fecha" => "2013" "volumen" => "26" "paginaInicial" => "165" "paginaFinal" => "174" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23140846" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0140" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Three-dimensional speckle tracking echocardiography-derived left atrial strain parameters are reduced in patients with atrial fibrillation (results from the MAGYAR-Path Study)" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S. Chadaide" 1 => "P. Domsik" 2 => "A. Kalapos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/echo.12218" "Revista" => array:6 [ "tituloSerie" => "Echocardiography" "fecha" => "2013" "volumen" => "30" "paginaInicial" => "1078" "paginaFinal" => "1083" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23659362" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0145" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Alternative ways to assess left atrial function in noncompaction cardiomyopathy by three-dimensional speckle-tracking echocardiography: (a case from the MAGYAR-Path study)" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A. Nemes" 1 => "P. Hausinger" 2 => "A. Kalapos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ijcard.2012.03.174" "Revista" => array:6 [ "tituloSerie" => "Int J Cardiol" "fecha" => "2012" "volumen" => "158" "paginaInicial" => "105" "paginaFinal" => "107" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22534046" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0150" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Atrial ejection force: a noninvasive assessment of atrial systolic function" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "W.J. Manning" 1 => "D.I. Silverman" 2 => "S.E. Katz" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Am Coll Cardiol" "fecha" => "1993" "volumen" => "22" "paginaInicial" => "221" "paginaFinal" => "225" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8509545" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0155" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Statistical methods for assessing agreement between two methods of clinical measurement" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.M. Bland" 1 => "D.G. Altman" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "1986" "volumen" => "1" "paginaInicial" => "307" "paginaFinal" => "310" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/2563462" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0160" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Assessment of left atrial ejection force in hypertrophic cardiomyopathy using real-time three-dimensional echocardiography" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A.M. Anwar" 1 => "O.I. Soliman" 2 => "M.L. Geleijnse" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.echo.2006.11.017" "Revista" => array:6 [ "tituloSerie" => "J Am Soc Echocardiogr" "fecha" => "2007" "volumen" => "20" "paginaInicial" => "744" "paginaFinal" => "748" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17543746" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0165" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluation of left atrial systolic function in noncompaction cardiomyopathy by real-time three-dimensional echocardiography" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A. Nemes" 1 => "A.M. Anwar" 2 => "K. Caliskan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10554-007-9261-5" "Revista" => array:6 [ "tituloSerie" => "Int J Cardiovasc Imaging" "fecha" => "2008" "volumen" => "24" "paginaInicial" => "237" "paginaFinal" => "242" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17849237" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0170" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of age and gender on left atrial ejection force and volume from real-time three-dimensional echocardiography" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "L. Zhong" 1 => "L.K. Tan" 2 => "C.J. Finn" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Ann Acad Med Singapore" "fecha" => "2012" "volumen" => "41" "paginaInicial" => "161" "paginaFinal" => "169" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22635280" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/21742049/0000003500000002/v2_201703220311/S2174204916000258/v2_201703220311/en/main.assets" "Apartado" => array:4 [ "identificador" => "9917" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original Articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/21742049/0000003500000002/v2_201703220311/S2174204916000258/v2_201703220311/en/main.pdf?idApp=UINPBA00004E&text.app=https://revportcardiol.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2174204916000258?idApp=UINPBA00004E" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 2 | 2 | 4 |
2024 October | 43 | 32 | 75 |
2024 September | 49 | 24 | 73 |
2024 August | 46 | 29 | 75 |
2024 July | 35 | 38 | 73 |
2024 June | 34 | 20 | 54 |
2024 May | 34 | 27 | 61 |
2024 April | 33 | 27 | 60 |
2024 March | 39 | 22 | 61 |
2024 February | 27 | 24 | 51 |
2024 January | 20 | 39 | 59 |
2023 December | 19 | 35 | 54 |
2023 November | 28 | 34 | 62 |
2023 October | 25 | 13 | 38 |
2023 September | 26 | 23 | 49 |
2023 August | 32 | 17 | 49 |
2023 July | 18 | 13 | 31 |
2023 June | 23 | 17 | 40 |
2023 May | 51 | 24 | 75 |
2023 April | 26 | 4 | 30 |
2023 March | 42 | 24 | 66 |
2023 February | 36 | 24 | 60 |
2023 January | 32 | 15 | 47 |
2022 December | 45 | 20 | 65 |
2022 November | 45 | 24 | 69 |
2022 October | 43 | 21 | 64 |
2022 September | 35 | 26 | 61 |
2022 August | 35 | 42 | 77 |
2022 July | 34 | 32 | 66 |
2022 June | 25 | 19 | 44 |
2022 May | 32 | 37 | 69 |
2022 April | 29 | 24 | 53 |
2022 March | 29 | 36 | 65 |
2022 February | 23 | 31 | 54 |
2022 January | 37 | 22 | 59 |
2021 December | 27 | 30 | 57 |
2021 November | 32 | 42 | 74 |
2021 October | 37 | 34 | 71 |
2021 September | 31 | 29 | 60 |
2021 August | 23 | 30 | 53 |
2021 July | 24 | 29 | 53 |
2021 June | 28 | 24 | 52 |
2021 May | 31 | 34 | 65 |
2021 April | 54 | 26 | 80 |
2021 March | 61 | 21 | 82 |
2021 February | 57 | 13 | 70 |
2021 January | 31 | 14 | 45 |
2020 December | 49 | 16 | 65 |
2020 November | 41 | 21 | 62 |
2020 October | 43 | 16 | 59 |
2020 September | 60 | 9 | 69 |
2020 August | 36 | 9 | 45 |
2020 July | 66 | 14 | 80 |
2020 June | 38 | 4 | 42 |
2020 May | 62 | 11 | 73 |
2020 April | 48 | 18 | 66 |
2020 March | 54 | 3 | 57 |
2020 February | 160 | 45 | 205 |
2020 January | 45 | 6 | 51 |
2019 December | 49 | 4 | 53 |
2019 November | 38 | 7 | 45 |
2019 October | 36 | 7 | 43 |
2019 September | 57 | 8 | 65 |
2019 August | 45 | 6 | 51 |
2019 July | 35 | 9 | 44 |
2019 June | 41 | 7 | 48 |
2019 May | 39 | 5 | 44 |
2019 April | 40 | 20 | 60 |
2019 March | 132 | 14 | 146 |
2019 February | 121 | 11 | 132 |
2019 January | 94 | 7 | 101 |
2018 December | 53 | 9 | 62 |
2018 November | 82 | 11 | 93 |
2018 October | 233 | 22 | 255 |
2018 September | 57 | 8 | 65 |
2018 August | 51 | 10 | 61 |
2018 July | 25 | 4 | 29 |
2018 June | 29 | 16 | 45 |
2018 May | 36 | 9 | 45 |
2018 April | 38 | 6 | 44 |
2018 March | 58 | 15 | 73 |
2018 February | 25 | 4 | 29 |
2018 January | 17 | 14 | 31 |
2017 December | 49 | 1 | 50 |
2017 November | 37 | 14 | 51 |
2017 October | 31 | 12 | 43 |
2017 September | 28 | 31 | 59 |
2017 August | 33 | 10 | 43 |
2017 July | 29 | 12 | 41 |
2017 June | 36 | 16 | 52 |
2017 May | 30 | 23 | 53 |
2017 April | 23 | 6 | 29 |
2017 March | 33 | 12 | 45 |
2017 February | 28 | 16 | 44 |
2017 January | 33 | 9 | 42 |
2016 December | 49 | 6 | 55 |
2016 November | 38 | 11 | 49 |
2016 October | 37 | 3 | 40 |
2016 September | 13 | 13 | 26 |
2016 August | 1 | 6 | 7 |
2016 July | 12 | 6 | 18 |
2016 June | 7 | 7 | 14 |
2016 May | 11 | 3 | 14 |
2016 April | 17 | 1 | 18 |
2016 March | 49 | 38 | 87 |