was read the article
array:24 [ "pii" => "S2174204913001918" "issn" => "21742049" "doi" => "10.1016/j.repce.2013.10.024" "estado" => "S300" "fechaPublicacion" => "2013-10-01" "aid" => "305" "copyright" => "Sociedade Portuguesa de Cardiologia" "copyrightAnyo" => "2013" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "ssu" "cita" => "Rev Port Cardiol. 2013;32:793-9" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 4560 "formatos" => array:3 [ "EPUB" => 156 "HTML" => 3549 "PDF" => 855 ] ] "itemSiguiente" => array:20 [ "pii" => "S2174204913001864" "issn" => "21742049" "doi" => "10.1016/j.repce.2013.02.012" "estado" => "S300" "fechaPublicacion" => "2013-10-01" "aid" => "309" "copyright" => "Sociedade Portuguesa de Cardiologia" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "sco" "cita" => "Rev Port Cardiol. 2013;32:801-5" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 5437 "formatos" => array:3 [ "EPUB" => 182 "HTML" => 4270 "PDF" => 985 ] ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Position Statement</span>" "titulo" => "Position statement on transcatheter aortic valve implantation in Portugal" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "pt" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "801" "paginaFinal" => "805" ] ] "titulosAlternativos" => array:1 [ "pt" => array:1 [ "titulo" => "Posição de consenso sobre válvulas aórticas percutâneas transcatéter em Portugal" ] ] "contieneResumen" => array:2 [ "en" => true "pt" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Rui Campante Teles, Vasco Gama Ribeiro, Lino Patrício, José Pedro Neves, Luís Vouga, José Fragata, Manuel Almeida, Pedro Braga, Duarte Cacela, Miguel Abecasis, Pedro Canas da Silva, Hélder Pereira" "autores" => array:12 [ 0 => array:2 [ "nombre" => "Rui" "apellidos" => "Campante Teles" ] 1 => array:2 [ "nombre" => "Vasco Gama" "apellidos" => "Ribeiro" ] 2 => array:2 [ "nombre" => "Lino" "apellidos" => "Patrício" ] 3 => array:2 [ "nombre" => "José Pedro" "apellidos" => "Neves" ] 4 => array:2 [ "nombre" => "Luís" "apellidos" => "Vouga" ] 5 => array:2 [ "nombre" => "José" "apellidos" => "Fragata" ] 6 => array:2 [ "nombre" => "Manuel" "apellidos" => "Almeida" ] 7 => array:2 [ "nombre" => "Pedro" "apellidos" => "Braga" ] 8 => array:2 [ "nombre" => "Duarte" "apellidos" => "Cacela" ] 9 => array:2 [ "nombre" => "Miguel" "apellidos" => "Abecasis" ] 10 => array:2 [ "nombre" => "Pedro Canas" "apellidos" => "da Silva" ] 11 => array:2 [ "nombre" => "Hélder" "apellidos" => "Pereira" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "pt" => array:9 [ "pii" => "S087025511300156X" "doi" => "10.1016/j.repc.2013.02.009" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "pt" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S087025511300156X?idApp=UINPBA00004E" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2174204913001864?idApp=UINPBA00004E" "url" => "/21742049/0000003200000010/v1_201312121254/S2174204913001864/v1_201312121254/en/main.assets" ] "itemAnterior" => array:20 [ "pii" => "S2174204913001839" "issn" => "21742049" "doi" => "10.1016/j.repce.2013.10.018" "estado" => "S300" "fechaPublicacion" => "2013-10-01" "aid" => "324" "copyright" => "Sociedade Portuguesa de Cardiologia" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Rev Port Cardiol. 2013;32:785-91" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 4692 "formatos" => array:3 [ "EPUB" => 159 "HTML" => 3799 "PDF" => 734 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Added value of cardiac magnetic resonance in etiological diagnosis of ventricular arrhythmias" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "pt" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "785" "paginaFinal" => "791" ] ] "titulosAlternativos" => array:1 [ "pt" => array:1 [ "titulo" => "A ressonância magnética cardíaca como uma mais-valia no diagnóstico etiológico de arritmias ventriculares" ] ] "contieneResumen" => array:2 [ "en" => true "pt" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 481 "Ancho" => 465 "Tamanyo" => 33958 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Late enhancement of the distal septum and right ventricular wall and right ventricular dilatation in 4-chamber view, phase-sensitive inversion recovery sequence, showing arrhythmogenic right ventricular dysplasia.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Nuno Cabanelas, Maria João Vidigal Ferreira, Paulo Donato, António Gaspar, Joana Pinto, Filipe Caseiro-Alves, Luís Augusto Providência" "autores" => array:7 [ 0 => array:2 [ "nombre" => "Nuno" "apellidos" => "Cabanelas" ] 1 => array:2 [ "nombre" => "Maria João" "apellidos" => "Vidigal Ferreira" ] 2 => array:2 [ "nombre" => "Paulo" "apellidos" => "Donato" ] 3 => array:2 [ "nombre" => "António" "apellidos" => "Gaspar" ] 4 => array:2 [ "nombre" => "Joana" "apellidos" => "Pinto" ] 5 => array:2 [ "nombre" => "Filipe" "apellidos" => "Caseiro-Alves" ] 6 => array:2 [ "nombre" => "Luís Augusto" "apellidos" => "Providência" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "pt" => array:9 [ "pii" => "S0870255113001716" "doi" => "10.1016/j.repc.2012.10.020" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "pt" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0870255113001716?idApp=UINPBA00004E" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2174204913001839?idApp=UINPBA00004E" "url" => "/21742049/0000003200000010/v1_201312121254/S2174204913001839/v1_201312121254/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review article</span>" "titulo" => "Sortilin and the risk of cardiovascular disease" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "793" "paginaFinal" => "799" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Maria Francisca Coutinho, Mafalda Bourbon, Maria João Prata, Sandra Alves" "autores" => array:4 [ 0 => array:4 [ "nombre" => "Maria Francisca" "apellidos" => "Coutinho" "email" => array:1 [ 0 => "francisca_coutinho@yahoo.com" ] "referencia" => array:4 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 3 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">¿</span>" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "Mafalda" "apellidos" => "Bourbon" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 2 => array:3 [ "nombre" => "Maria João" "apellidos" => "Prata" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 3 => array:3 [ "nombre" => "Sandra" "apellidos" => "Alves" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] ] "afiliaciones" => array:4 [ 0 => array:3 [ "entidad" => "Grupo de Investigação em Doenças Lisossomais de Sobrecarga, Unidade de I&D, Departamento de Genética Humana, INSA, Porto, Portugal" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "IPATIMUP, Porto, Portugal" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Grupo de Investigação Cardiovascular, Unidade de I&D, Departamento de Promoção da Saúde e Doenças Crónicas, INSA, Lisboa, Portugal" "etiqueta" => "d" "identificador" => "aff0020" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "pt" => array:1 [ "titulo" => "Sortilina e risco de doença cardiovascular" ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Introduction</span><p id="par0095" class="elsevierStylePara elsevierViewall">Cardiovascular disease is the leading cause of death in developed countries,<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> and is responsible for 32% of deaths recorded in Portugal, according to the National Institute of Statistics.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> Coronary artery disease (CAD), in particular, represents a major clinical problem, accounting for one in five deaths in the US.<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3,4</span></a> Multiple factors contribute to the development of CAD but it is well established that one of its key determinants is plasma LDL-C level. According to estimates by the WHO, about 9 million deaths/year and more than 75 million years of life lost/year are due to hypertension or hypercholesterolemia.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> Overall, hypercholesterolemia is responsible for 18% of recorded events of cerebrovascular disease (CVD), mostly non-fatal events, and 56% of ischemic heart disease.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> The data for Europe suggest that hypercholesterolemia may be responsible for up to 12% of disability-adjusted life years.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> Given the size of these numbers, many attempts have been made to elucidate the pathways that regulate LDL metabolism. It is now known that, for small groups of individuals, high cholesterol levels may be of genetic origin. There is even a Mendelian disease associated with high blood cholesterol: familial hypercholesterolemia.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> Most patients suffering from this condition present pathogenic mutations in the gene that codes for the LDL receptor (<span class="elsevierStyleItalic">LDLR</span>), but it has been reported that defects in the apolipoprotein (apo) B gene (<span class="elsevierStyleItalic">APOB</span>), or less commonly, in the proprotein convertase subtilisin/kexin type 9 (<span class="elsevierStyleItalic">PCSK9</span>) gene, may also be associated with this clinical phenotype.<a class="elsevierStyleCrossRefs" href="#bib0030"><span class="elsevierStyleSup">6,7</span></a> Mutations in any of these genes lead to either loss (<span class="elsevierStyleItalic">LDLR</span> and <span class="elsevierStyleItalic">APOB</span>) or gain (<span class="elsevierStyleItalic">PCSK9</span>) of function of its associated protein and high cardiovascular risk.</p><p id="par0100" class="elsevierStylePara elsevierViewall">However, there are few cases in which it is possible to relate a specific gene mutation to CVD. The pathogenesis of the major forms of CVD involves behavioral, environmental and genetic factors and the genetic component is known to be highly complex, resulting from the interaction of multiple genetic determinants.<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a> There are, however, several polymorphisms in these and other genes involved in lipid metabolism that, even though presenting a smaller effect on the protein for which they code, may play a significant part in CVD risk (reviewed in <a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a>).</p><p id="par0105" class="elsevierStylePara elsevierViewall">With the advent of new sequencing technologies, the search for a deeper understanding of these mechanisms, as well as the genetic basis of other risk factors, has gained new impetus; it has become possible to screen large populations for the genetic basis for complex diseases. Ultimately, such epidemiological studies may lead to a better understanding of etiological pathways and contribute to the development of new strategies for prevention and treatment.<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a></p><p id="par0110" class="elsevierStylePara elsevierViewall">Recently, large-scale genome-wide association studies (GWAS) have made it possible to identify a novel set of DNA variants that influence plasma LDL-C levels. The most consistent of these associations was observed in a cluster of genes on chromosome 1p13. The clinical relevance of this novel pathway is highlighted by the 40% difference in risk of myocardial infarction (MI) between individuals homozygous for the minor (less common) and major (more common) alleles of the p13 locus on chromosome 1. The effect is comparable to that attributed to common variants of <span class="elsevierStyleItalic">LDLR</span> and <span class="elsevierStyleItalic">PCSK9</span> and greater than that described for the most common variants in <span class="elsevierStyleItalic">HMGCR</span> (the gene that codes for 3-hydroxy-3-methylglutaryl-coenzyme A reductase,<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> the therapeutic target of statins, which is the class of drugs most commonly used in the treatment of hyperlipidemias). The <span class="elsevierStyleItalic">SORT1</span> gene is located in the 1p13 cluster. This gene codes for sortilin, a multifunctional protein whose biological importance is becoming clearer as it is revealed to have novel and unexpected functions. Although its functions as a receptor for various ligands were already known, given the clear association reported by different GWAS, three independent teams<a class="elsevierStyleCrossRefs" href="#bib0050"><span class="elsevierStyleSup">10–12</span></a> set out to elucidate the biological mechanism relating sortilin to LDL-C levels and, ultimately, to risk of CAD. To this end, they used different mechanistic approaches and, interestingly, came to different conclusions. Here we summarize each of these approaches and their main conclusions, and attempt to reconcile the apparently discrepant results.</p><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Looking for a needle in a haystack: genome-wide association studies</span><p id="par0115" class="elsevierStylePara elsevierViewall">Over the past few years, with the emergence and spread of third-generation sequencers, advances in sequencing and genotyping have catapulted GWAS to the forefront of population studies, with special focus on the relationship between genotype and common diseases. These studies are based on the premise that, for a large number of such diseases, the underlying hereditary variations have a minor allele frequency of more than 5%. It is then possible, through the analysis of large population samples, to identify associations of certain diseases with certain regions of the genome, both coding and non-coding. In fact, several genetic variants identified through GWAS are located in non-coding regions of the genome. Interpretation of the effects of the identified variants depends largely on the knowledge available on those regions. The possibility of genes located in the target region being responsible for the detected association is then estimated, without excluding the possibility that it may result from long-range genetic interactions or from other unknown reasons. The challenge is to understand the biological basis of the signs revealed in GWAS. Although this may be difficult, GWAS have already uncovered important genetic factors underlying a number of complex diseases. One of the most successful cases in terms of identification of single-nucleotide polymorphisms (SNPs) which are relevant to the pathogenesis of a complex disease is in fact the annotation of genes correlated with plasma lipid and lipoprotein levels, factors which have long been known to be important in pathological conditions such as dyslipidemia and MI. Over the last few years more than 100 loci have been described as associated with genetic variation in triglyceride, LDL-C and high-density lipoprotein (HDL) cholesterol levels.<a class="elsevierStyleCrossRefs" href="#bib0065"><span class="elsevierStyleSup">13–20</span></a> In the cases of CAD and MI, GWAS identified a smaller number of genetic loci, some of which were also associated with changes in traditional risk factors. A comprehensive analysis of several GWAS has identified and annotated CAD-associated loci,<a class="elsevierStyleCrossRefs" href="#bib0070"><span class="elsevierStyleSup">14,17,21–23</span></a> by combining data from the Welcome Trust Case Control Consortium and the German MI Family Study. It presented evidence of associations between seven chromosomal loci and CAD risk<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a>: 1p13 (<span class="elsevierStyleItalic">SARS</span>, <span class="elsevierStyleItalic">CELSR2</span>, <span class="elsevierStyleItalic">PSRC1</span>, <span class="elsevierStyleItalic">MYBPHL</span>, <span class="elsevierStyleItalic">SORT1</span>, <span class="elsevierStyleItalic">PSMA5</span> and <span class="elsevierStyleItalic">SYPL2</span>), 1q41 (<span class="elsevierStyleItalic">MIA3</span>), 2q36 (intergenic region), 6q25.1 (<span class="elsevierStyleItalic">MTHFD1L</span>), 9p21 (<span class="elsevierStyleItalic">CDKN2A</span> and <span class="elsevierStyleItalic">CDKN2B</span>), 10q11 (intergenic region) and 15q22.33 (<span class="elsevierStyleItalic">SMAD3</span>). The immediate question that arose was whether these new loci affected already known cardiovascular risk factors. To clarify this question, Samani et al.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a> investigated the association of these seven loci with a number of quantitative traits of known relevance to cardiovascular disease, and showed that only the risk locus on chromosome 1p13 was significantly associated with higher LDL-C levels. The strongest association was located in the intergenic region including the <span class="elsevierStyleItalic">PSRC1</span> and <span class="elsevierStyleItalic">CELSR2</span> genes, which code for proline/serine-rich coiled-coil 1 and cadherin EGF, respectively. The function of these proteins remains unknown, but their coding genes are located close to the gene that codes for sortilin, <span class="elsevierStyleItalic">SORT1</span>. None of these three genes, nor any of the others present in the 1p13 locus, have ever been associated with a known Mendelian disease affecting LDL-C levels.<a class="elsevierStyleCrossRefs" href="#bib0050"><span class="elsevierStyleSup">10,13,20</span></a></p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Usual and unusual suspects: low-density lipoprotein cholesterol and sortilin</span><p id="par0120" class="elsevierStylePara elsevierViewall">Given such a statistically significant association between the 1p13 locus and plasma LDL-C levels, the search for its explanatory mechanism became the research focus of various teams.</p><p id="par0125" class="elsevierStylePara elsevierViewall">Firstly, it was important to clarify which particular genomic variant was causing this association. Due to the linkage disequilibrium (extensive and non-random relationship) between multiple SNPs at the 1p13 locus (comprising the genes <span class="elsevierStyleItalic">SORT1</span>, <span class="elsevierStyleItalic">PSRC1</span> and <span class="elsevierStyleItalic">CELSR2</span>), it was impossible to identify the causal variant solely through GWAS. In silico, in vitro and in vivo studies would be required to clarify this point, as well as the mechanisms behind this association. As these studies were being carried out, one gene began to stand out from all the others comprising this CAD risk locus: the <span class="elsevierStyleItalic">SORT1</span> gene, which codes for sortilin.<a class="elsevierStyleCrossRefs" href="#bib0050"><span class="elsevierStyleSup">10–12</span></a></p><p id="par0130" class="elsevierStylePara elsevierViewall">Sortilin belongs to the Vps10p domain receptor family, which consists of five known members. It is synthesized as a propeptide, cleaved in the Golgi apparatus by proprotein convertases, after which the protein takes its mature form, which allows proper ligand binding. Functionally, sortilin is a receptor of multiple ligands, including lipoprotein lipase (LPL),<a class="elsevierStyleCrossRef" href="#bib0120"><span class="elsevierStyleSup">24</span></a> the A-V apolipoproteins (apo A-V),<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">25</span></a> neurotensin<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">26</span></a> and receptor-associated protein (RAP).<a class="elsevierStyleCrossRef" href="#bib0135"><span class="elsevierStyleSup">27</span></a> It is also responsible for mediating Golgi-to-lysosome transport of a number of lysosomal proteins, some (but not all) enzymatic: sphingolipid activator proteins (SAPs): prosaposin and GM2 activator protein (GM2AP), acid sphingomyelinase, cathepsin H and cathepsin D.<a class="elsevierStyleCrossRefs" href="#bib0120"><span class="elsevierStyleSup">24,28–30</span></a> In recent years, it has been demonstrated that sortilin is involved in a number of important biological processes such as the formation of glucose transport 4 (GLUT-4) storage vesicles in response to insulin during adipocyte differentiation.<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">31</span></a> In the brain, it is part of a signaling complex that regulates cell survival.<a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">32</span></a></p><p id="par0135" class="elsevierStylePara elsevierViewall">The importance of these multiple properties in vivo remains unclear but it is evident that sortilin is a protein with an important biological role, deregulation of which is likely to cause severe side-effects that may go beyond its effect on plasma LDL-C levels.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">An exemplary approach: mechanistic analyses</span><p id="par0140" class="elsevierStylePara elsevierViewall">In 2010, three independent teams published results from pioneering studies which set out to clarify the biological mechanism underlying the association between the 1p13 locus and plasma LDL levels.<a class="elsevierStyleCrossRefs" href="#bib0050"><span class="elsevierStyleSup">10–12</span></a> Based on solid, though different, experimental approaches, all three studies indicate that the <span class="elsevierStyleItalic">SORT1</span> gene is responsible for the increased risk of CAD and/or MI. Curiously, the studies reached conclusions that were not only different but, in some cases, even opposite concerning the role of sortilin in the secretion of very low-density lipoprotein cholesterol (VLDL-C) (reviewed in <a class="elsevierStyleCrossRefs" href="#bib0165"><span class="elsevierStyleSup">33,34</span></a>).</p><p id="par0145" class="elsevierStylePara elsevierViewall">The first in vitro evidence of the interaction between sortilin and LDL particles was presented by Linsel-Nitschke et al.<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> Through fine mapping of the 1p13 locus, the authors began by seeking the variant with the strongest signs of that association and identified the SNP rs599839, showing that the G allele was the one associated with reduced plasma LDL-C levels and lower cardiovascular disease risk. They demonstrated that individuals homozygous for the G allele showed increased expression of the <span class="elsevierStyleItalic">SORT1</span>, <span class="elsevierStyleItalic">CELSR2</span> and <span class="elsevierStyleItalic">PSRC1</span> genes in peripheral white blood cells. The strongest and most consistent association, however, was seen for <span class="elsevierStyleItalic">SORT1</span> mRNA levels. These results were confirmed in human embryonic kidney cells (HEK293) over-expressing <span class="elsevierStyleItalic">SORT1</span> that showed increased internalization of LDL-C particles, leading to lower LDL-C plasma levels.<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a></p><p id="par0150" class="elsevierStylePara elsevierViewall">In the same year (2010), Musunuru et al.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> presented a multifaceted approach, a <span class="elsevierStyleItalic">tour de force</span> for the follow-up of GWAS.<a class="elsevierStyleCrossRef" href="#bib0175"><span class="elsevierStyleSup">35</span></a> Based on the previous recognition that the rs646776, rs599839, rs12740374 and rs629301 SNPs from the 1p13 locus were most strongly associated with plasma LDL-C levels and on the assumption that non-coding DNA variants may alter gene expression, Musunuru et al. started by analyzing the effects of these four variants on the mRNA levels of the six genes located in that locus: <span class="elsevierStyleItalic">SARS</span>, <span class="elsevierStyleItalic">CELSR2</span>, <span class="elsevierStyleItalic">PSRC1</span>, <span class="elsevierStyleItalic">MYBPHL</span>, <span class="elsevierStyleItalic">SYP2</span> and <span class="elsevierStyleItalic">SORT1</span>. They found that in human liver the minor allele for the rs646776 SNP was associated with increased expression of the <span class="elsevierStyleItalic">SORT1</span>, <span class="elsevierStyleItalic">CELSR2</span> and <span class="elsevierStyleItalic">PSRC1</span> genes,<a class="elsevierStyleCrossRef" href="#bib0180"><span class="elsevierStyleSup">36</span></a> with the strongest association observed for <span class="elsevierStyleItalic">SORT1</span> mRNA levels and its corresponding protein, sortilin. Fine mapping of the region of interest led to the identification of the haplotypes defined by the SNPs present in 6.1 kilobases located between the <span class="elsevierStyleItalic">CELSR2</span> and <span class="elsevierStyleItalic">PSRC1</span> genes, and to the identification of the SNP rs12740374 as the one ultimately responsible for the association observed in GWAS. Bioinformatic analysis showed that, altering the wild-type sequence from G<span class="elsevierStyleBold">G</span>TGCTCAAT to G<span class="elsevierStyleBold">T</span>TGCTCAAT, the minor allele of this variant created a binding site for the CCAAT/enhancer binding protein (C/EBP) α, increasing promoter activity and <span class="elsevierStyleItalic">SORT1</span> expression level. This was later confirmed in vitro. It should be noted that these results are in full agreement with the findings of Linsel-Nitsche's group<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> concerning mRNA expression levels in the liver. Finally, through studies on liver cells from mutant mice in which the gene coding for sortilin was over-expressed or inactivated, Musunuru et al. demonstrated that sortilin expression levels modulate the hepatic secretion of VLDL. The transgenic mouse chosen by this team was <span class="elsevierStyleItalic">Apobec1</span><span class="elsevierStyleSup">−/−</span>, a humanized mouse in which the gene that encodes the C->U-editing enzyme APOBEC-1 is suppressed, with a lipid profile closer to that seen in humans, in whom LDL is the predominant cholesterol transporter in circulation, rather than that typical of mice. When Musunuru et al. over-expressed the <span class="elsevierStyleItalic">SORT1</span> gene in <span class="elsevierStyleItalic">Apobec1</span><span class="elsevierStyleSup">−/−</span> liver cells, a 70% reduction in plasma total cholesterol (TC) and LDL-C was observed. Similarly, inactivation of <span class="elsevierStyleItalic">SORT1</span> by short-interfering RNA (siRNA) led to increases of 46% in TC and 125% in LDL.</p><p id="par0155" class="elsevierStylePara elsevierViewall">In general, the data presented by these two teams support the findings of GWAS findings and reinforce the idea of a negative correlation between <span class="elsevierStyleItalic">SORT1</span> mRNA levels and plasma LDL-C concentrations. However, in the same year a third mechanistic study addressing this association was published and in this case, the results were not so easily reconciled either with the results from the previous studies or with the previous assumptions inferred through GWAS.</p><p id="par0160" class="elsevierStylePara elsevierViewall">The results presented by Kjolby et al.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> were published almost simultaneously. These authors used as a model a double knockout mouse, <span class="elsevierStyleItalic">Sort1</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">−/−</span></span>,<span class="elsevierStyleItalic">Ldlr</span><span class="elsevierStyleSup">−/−</span>, having observed that its hepatocytes presented reductions of 30% in TC levels, ∼50% in proteins containing apo B100 (VLDL and LDL), and ∼60% in atherosclerotic plaque area compared to <span class="elsevierStyleItalic">Ldlr</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">−/−</span></span> single knockout mice. Next, they performed liver-specific <span class="elsevierStyleItalic">SORT1</span> over-expression. Briefly, they found that sortilin deficiency led to a 50% reduction in the secretion of lipoproteins, whereas over-expression resulted in a 50% increase. Together, these results indicate a positive correlation between <span class="elsevierStyleItalic">SORT1</span> expression and LDL-C levels, opposite to that observed by Musunuru et al.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a></p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Spot the differences: analysis of the results</span><p id="par0165" class="elsevierStylePara elsevierViewall">The question of the discrepancy between the results of these three studies has been discussed by various experts, particularly Dubé<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">34</span></a> and Tall and Ai,<a class="elsevierStyleCrossRef" href="#bib0165"><span class="elsevierStyleSup">33</span></a> in 2011. These authors drew attention to the methodological differences between the studies of Linsel-Nitschke et al.,<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> Musunuru et al.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> and Kjolby et al.,<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> and the effects that those differences may have had on their results. The three teams that set out to clarify the mechanism by which the 1p13 locus affects LDL levels and the risk of CAD opted for different experimental models, which appear to have influenced the final results. This implies that their conclusions, even though they are consistent and resulted from well-designed and consistent experiments, may not be comparable.</p><p id="par0170" class="elsevierStylePara elsevierViewall">The first important point is the metabolic background in which each of the experiments was carried out. Linsel-Nitschke and colleagues<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> conducted their investigation only in humans, unlike Musunuru et al.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> and Kjolby et al.,<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> who analyzed non-human animal models. Nevertheless, the latter teams chose mouse models with different metabolic profiles: Musunuru et al. worked with liver cells from a humanized mouse, <span class="elsevierStyleItalic">Apobec</span><span class="elsevierStyleSup">−/−</span>, while Kjolby et al. studied a sortilin and LDL receptor double knockout (<span class="elsevierStyleItalic">Sort1</span><span class="elsevierStyleSup">−/−</span>,<span class="elsevierStyleItalic">Ldlr</span><span class="elsevierStyleSup">−/−</span>). Musunuru's mouse produced and secreted abnormally high amounts of lipoproteins, mimicking the human lipid profile, which may have artificially modified sortilin's secretory pathways and availability. Kjolby's mouse had deficient lipoprotein catabolism, created by the repression of <span class="elsevierStyleItalic">SORT1</span> expression within hepatocytes and a high-fat “western” diet. Finally, there are differences in gene regulation between the two species, man and mouse, as demonstrated by the absence of the C/EBPα binding site in mice.<a class="elsevierStyleCrossRefs" href="#bib0050"><span class="elsevierStyleSup">10,37</span></a> This may hinder extrapolation of mouse studies to humans with regard to sortilin.<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">34</span></a></p><p id="par0175" class="elsevierStylePara elsevierViewall">It should be noted that, taken together, in vivo observations from studies in mouse models show that sortilin assumes complementary liver functions, depending on the metabolic milieu in which it operates, and ultimately regulates VLDL secretion. The different results reviewed here seem to suggest that sortilin regulates VLDL secretion and traffic to the lysosome when intracellular apo B-100 levels are extremely high. Conversely, at low apo B-100 expression levels, sortilin regulates the formation and secretion of VLDL.<a class="elsevierStyleCrossRefs" href="#bib0165"><span class="elsevierStyleSup">33,34</span></a></p><p id="par0180" class="elsevierStylePara elsevierViewall">Nevertheless, this putative role of sortilin in the formation and secretion of VLDL is hard to reconcile with GWAS results indicating a specific association with LDL-C but not with triglycerides, which are the major components of VLDL particles.<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">34</span></a></p><p id="par0185" class="elsevierStylePara elsevierViewall">Taken together, even though the findings of these studies are in some ways contradictory, they also provide strong evidence of the existence of a novel regulatory pathway for lipoprotein metabolism and show that modulating this pathway could alter cardiovascular disease risk in humans. Nevertheless, there is still a long way to go before the whole process and its modulators are clearly understood.</p></span></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Conclusion</span><p id="par0190" class="elsevierStylePara elsevierViewall">By genotyping high-frequency alleles, GWAS are limited to identifying alleles which exert minimal, or even negligible, effects on the phenotype.<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">38</span></a> Furthermore, the most common alleles appear to explain only a small portion of the phenotype.<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">39</span></a> Thus, a significant proportion of the inheritance of complex phenotypes such as cardiovascular disease (CAD in particular) remains unknown, despite all the efforts in this area through numerous GWAS. This portion of heredity has been called “missing heritability” or the “dark matter” of heritability.<a class="elsevierStyleCrossRef" href="#bib0175"><span class="elsevierStyleSup">35</span></a> The supporters of GWAS argue that increasing the size of the study samples and SNP density will enable detection of alleles with very small effect sizes, revealing the portion of inheritance which remains unknown.<a class="elsevierStyleCrossRef" href="#bib0175"><span class="elsevierStyleSup">35</span></a> Nevertheless, some authors support an alternative strategy based on whole-genome direct sequencing as a way of identifying rare alleles with large effects on the phenotype.<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">40</span></a> Crucial to this are recent advances in DNA sequencing technology, with the development of new platforms for third-generation sequencing that enable low-cost whole genome sequencing and identification of rare and/or new variants. It is believed that each genome has approximately 10 000 non-synonymous variants, among approximately 3.5 million SNPs. Given the size of these numbers, this kind of sequencing is expected to dominate genetic studies in coming years, a trend that can already be seen.<a class="elsevierStyleCrossRefs" href="#bib0205"><span class="elsevierStyleSup">41–45</span></a></p><p id="par0195" class="elsevierStylePara elsevierViewall">It does, however, appear that the “dark matter” of heritability is the product of complex interactions between factors of different types: genetic, genomic and epigenetic.<a class="elsevierStyleCrossRefs" href="#bib0195"><span class="elsevierStyleSup">39,46</span></a> Similarly, the phenotype is also the result of nonlinear and stochastic interactions between different genetic and non-genetic factors.</p><p id="par0200" class="elsevierStylePara elsevierViewall">Nevertheless, the discovery and systematization of new genetic variants associated with a particular complex phenotype is important, particularly for the example reported here, in which these techniques have led to the discovery of a previously unknown molecular pathway.</p><p id="par0205" class="elsevierStylePara elsevierViewall">The three reports reviewed here are exemplary approaches to the need to move from a “blind” statistical association given by GWAS to a mechanistic explanation of how a particular genetic variation can modulate a particular phenotype. In this case, GWAS results pointed to a particular starting point, the 1p13 locus,<a class="elsevierStyleCrossRefs" href="#bib0070"><span class="elsevierStyleSup">14,21–23</span></a> which eventually caught the attention of three independent teams who relied on different experimental approaches to unveil the basis of the statistical association, all of which identified the <span class="elsevierStyleItalic">SORT1</span> gene as the modulator of LDL-C levels and MI risk. But, while their results were in agreement concerning the relevance of <span class="elsevierStyleItalic">SORT1</span>'s role in the regulation of lipoprotein metabolism, their interpretations of the effect of its expression on plasma LDL-C levels and its underlying mechanism differed.</p><p id="par0210" class="elsevierStylePara elsevierViewall">Linsel-Nitschke and colleagues<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> proposed, on the basis of their observations, that overexpression of sortilin increases the internalization of LDL, with a consequent decrease in plasma levels. Soon afterwards, through studies in human cohorts, hepatocytes and mice, Musunuru et al.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> reported an inverse relationship between sortilin expression and circulating LDL-C levels, and proposed an explanatory mechanism through transcriptional regulation (liver-specific) of the <span class="elsevierStyleItalic">SORT1</span> gene by the transcription factor C/EBPα. By contrast, Kjolby et al.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> observed a direct relationship between <span class="elsevierStyleItalic">SORT1</span> expression and circulating LDL concentrations, suggesting this could result from increased VLDL secretion.</p><p id="par0215" class="elsevierStylePara elsevierViewall">Several explanations have been put forward for the discrepancy between these results; the answer seems to depend on sortilin itself, which appears to be a multifaceted protein that can assume different functions depending on circumstances.</p><p id="par0220" class="elsevierStylePara elsevierViewall">To summarize, the studies reviewed here presented strong evidence that <span class="elsevierStyleItalic">SORT1</span> is a regulator of plasma LDL-C levels, adding a significant role to the sortilin-coding gene that was unknown until recently. The cellular pathway relating sortilin to lipid metabolism is still controversial but it is surely an issue that will be further explored. A full understanding of this pathway will be crucial to assess whether sortilin is a potential target for therapeutic interventions for hypercholesterolemia or CAD (reviewed in <a class="elsevierStyleCrossRefs" href="#bib0165"><span class="elsevierStyleSup">33–35</span></a>).</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Conflicts of interest</span><p id="par0240" class="elsevierStylePara elsevierViewall">The authors have no conflicts of interest to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:8 [ 0 => array:2 [ "identificador" => "xres298804" "titulo" => "Abstract" ] 1 => array:2 [ "identificador" => "xpalclavsec281828" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "xres298805" "titulo" => "Resumo" ] 3 => array:2 [ "identificador" => "xpalclavsec281829" "titulo" => "Palavras-chave" ] 4 => array:3 [ "identificador" => "sec0005" "titulo" => "Introduction" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0010" "titulo" => "Looking for a needle in a haystack: genome-wide association studies" ] 1 => array:2 [ "identificador" => "sec0015" "titulo" => "Usual and unusual suspects: low-density lipoprotein cholesterol and sortilin" ] 2 => array:2 [ "identificador" => "sec0020" "titulo" => "An exemplary approach: mechanistic analyses" ] 3 => array:2 [ "identificador" => "sec0025" "titulo" => "Spot the differences: analysis of the results" ] ] ] 5 => array:2 [ "identificador" => "sec0030" "titulo" => "Conclusion" ] 6 => array:2 [ "identificador" => "sec0055" "titulo" => "Conflicts of interest" ] 7 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2013-01-11" "fechaAceptado" => "2013-02-21" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec281828" "palabras" => array:6 [ 0 => "Genome-wide association studies" 1 => "Coronary artery disease" 2 => "Low-density lipoprotein cholesterol" 3 => "Sortilin" 4 => "Functional genetics" 5 => "Lipoprotein metabolism" ] ] ] "pt" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palavras-chave" "identificador" => "xpalclavsec281829" "palabras" => array:6 [ 0 => "<span class="elsevierStyleItalic">Genome wide association studies</span>" 1 => "Doença das artérias coronárias" 2 => "Colesterol lipoproteína de baixa densidade" 3 => "Sortilina" 4 => "Genómica funcional" 5 => "Metabolismo das lipoproteínas" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Plasma low-density lipoprotein cholesterol (LDL-C) levels are a key determinant of the risk of cardiovascular disease, which is why many studies have attempted to elucidate the pathways that regulate its metabolism. Novel latest-generation sequencing techniques have identified a strong association between the 1p13 locus and the risk of cardiovascular disease caused by changes in plasma LDL-C levels. As expected for a complex phenotype, the effects of variation in this locus are only moderate. Even so, knowledge of the association is of major importance, since it has unveiled a new metabolic pathway regulating plasma cholesterol levels. Crucial to this discovery was the work of three independent teams seeking to clarify the biological basis of this association, who succeeded in proving that <span class="elsevierStyleItalic">SORT1</span>, encoding sortilin, was the gene in the 1p13 locus involved in LDL metabolism. <span class="elsevierStyleItalic">SORT1</span> was the first gene identified as determining plasma LDL levels to be mechanistically evaluated and, although the three teams used different, though appropriate, experimental methods, their results were in some ways contradictory. Here we review all the experiments that led to the identification of the new pathway connecting sortilin with plasma LDL levels and risk of myocardial infarction. The regulatory mechanism underlying this association remains unclear, but its discovery has paved the way for considering previously unsuspected therapeutic targets and approaches.</p>" ] "pt" => array:2 [ "titulo" => "Resumo" "resumen" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">O nível plasmático de c-LDL constitui um determinante chave para o risco de doença cardiovascular, razão pela qual muitos estudos têm procurado elucidar as vias que regulam o seu metabolismo. As novas técnicas de sequenciação de última geração permitiram identificar um forte sinal de associação entre o <span class="elsevierStyleItalic">locus</span> 1p13 e o risco de doença cardiovascular causada por alteração dos níveis de LDL no plasma. Como seria de esperar para um fenótipo complexo, os efeitos da variação nesse <span class="elsevierStyleItalic">locus</span> são apenas moderados, ainda assim, o conhecimento da associação foi de grande importância uma vez que conduziu à descoberta de uma nova via metabólica reguladora dos níveis de colesterol no plasma. Para tal, foram fundamentais os trabalhos efetuados por três equipas independentes, que ao procurarem esclarecer as bases biológicas da associação em causa conseguiram provar que o gene <span class="elsevierStyleItalic">SORT1</span>, codificador da sortilina, era o gene do <span class="elsevierStyleItalic">locus</span> 1p13 implicado no metabolismo das LDL. <span class="elsevierStyleItalic">SORT1</span> foi o primeiro dos genes identificados como determinantes dos níveis plasmáticos de LDL a ser alvo de avaliação mecanística e embora cada uma das equipas recorresse a metodologias experimentais diferentes, mas igualmente apropriadas face à questão em investigação, os resultados que obtiveram foram contraditórios em alguns aspetos. Neste trabalho, revemos o caminho percorrido até à descoberta da nova via que relaciona a sortilina com os níveis plasmáticos de LDL e com o risco de enfarte do miocárdio. Ainda por esclarecer permanece o mecanismo regulador dessa ligação, mas a sua descoberta sugere novos alvos terapêuticos até há bem pouco tempo desconhecidos.</p>" ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Coutinho MF, Bourbon M, Prata MJ, et al. Sortilina e risco de doença cardiovascular. Rev Port Cardiol. 2013;32:793–799.</p>" ] ] "nomenclatura" => array:1 [ 0 => array:3 [ "identificador" => "nom0005" "titulo" => "<span class="elsevierStyleSectionTitle" id="sect0025">List of abbreviations</span>" "listaDefinicion" => array:1 [ 0 => array:1 [ "definicion" => array:18 [ 0 => array:2 [ "termino" => "apo" "descripcion" => "<p id="par0005" class="elsevierStylePara elsevierViewall">apolipoprotein</p>" ] 1 => array:2 [ "termino" => "C/EBP" "descripcion" => "<p id="par0010" class="elsevierStylePara elsevierViewall">CCAAT/enhancer binding protein</p>" ] 2 => array:2 [ "termino" => "CAD" "descripcion" => "<p id="par0015" class="elsevierStylePara elsevierViewall">coronary artery disease</p>" ] 3 => array:2 [ "termino" => "CVD" "descripcion" => "<p id="par0020" class="elsevierStylePara elsevierViewall">cerebrovascular disease</p>" ] 4 => array:2 [ "termino" => "GLUT4" "descripcion" => "<p id="par0025" class="elsevierStylePara elsevierViewall">glucose transporter 4</p>" ] 5 => array:2 [ "termino" => "GM2AP" "descripcion" => "<p id="par0030" class="elsevierStylePara elsevierViewall">GM2 activator protein</p>" ] 6 => array:2 [ "termino" => "GWAS" "descripcion" => "<p id="par0035" class="elsevierStylePara elsevierViewall">genome-wide association studies</p>" ] 7 => array:2 [ "termino" => "HDL" "descripcion" => "<p id="par0040" class="elsevierStylePara elsevierViewall">high-density lipoprotein</p>" ] 8 => array:2 [ "termino" => "LDL" "descripcion" => "<p id="par0045" class="elsevierStylePara elsevierViewall">low-density lipoprotein</p>" ] 9 => array:2 [ "termino" => "LDL-C" "descripcion" => "<p id="par0050" class="elsevierStylePara elsevierViewall">low-density lipoprotein</p>" ] 10 => array:2 [ "termino" => "LPL" "descripcion" => "<p id="par0055" class="elsevierStylePara elsevierViewall">lipoprotein lipase</p>" ] 11 => array:2 [ "termino" => "MI" "descripcion" => "<p id="par0060" class="elsevierStylePara elsevierViewall">myocardial infarction</p>" ] 12 => array:2 [ "termino" => "RAP" "descripcion" => "<p id="par0065" class="elsevierStylePara elsevierViewall">receptor-associated protein</p>" ] 13 => array:2 [ "termino" => "SAP" "descripcion" => "<p id="par0070" class="elsevierStylePara elsevierViewall">sphingolipid activator protein</p>" ] 14 => array:2 [ "termino" => "siRNA" "descripcion" => "<p id="par0075" class="elsevierStylePara elsevierViewall">short interfering RNA</p>" ] 15 => array:2 [ "termino" => "SNP" "descripcion" => "<p id="par0080" class="elsevierStylePara elsevierViewall">single-nucleotide polymorphism</p>" ] 16 => array:2 [ "termino" => "TC" "descripcion" => "<p id="par0085" class="elsevierStylePara elsevierViewall">total cholesterol</p>" ] 17 => array:2 [ "termino" => "VLDL-C" "descripcion" => "<p id="par0090" class="elsevierStylePara elsevierViewall">very low-density lipoprotein cholesterol</p>" ] ] ] ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:46 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The global burden of cardiovascular disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "C. Deaton" 1 => "E. Froelicher" 2 => "L. Wuc" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S1474-5151(11)00111-3" "Revista" => array:6 [ "tituloSerie" => "Eur J Cardiovasc Nurs" "fecha" => "2011" "volumen" => "10" "paginaInicial" => "S5" "paginaFinal" => "S13" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21762852" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Anuário Estatístico de Portugal. Instituto Nacional de Estatística; 2010. Available from: <a id="intr0010" class="elsevierStyleInterRef" href="http://www.ine.pt/xportal/xmain%3Fxpid=INE%26xpgid=ine_publicacoes%26PUBLICACOESpub_boui=133813349%26PUBLICACOESmodo=2">http://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=133813349&PUBLICACOESmodo=2</a> [accessed 18.08.12]." ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Heart disease and stroke statistics – 2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "W. Rosamond" 1 => "K. Flegal" 2 => "G. Friday" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/CIRCULATIONAHA.106.179918" "Revista" => array:6 [ "tituloSerie" => "Circulation" "fecha" => "2007" "volumen" => "115" "paginaInicial" => "e69" "paginaFinal" => "e171" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17194875" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Blood cholesterol and vascular mortality by age, sex and blood pressure: meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "Prospective Studies Collaboration" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(07)61778-4" "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "2007" "volumen" => "370" "paginaInicial" => "1829" "paginaFinal" => "1839" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18061058" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Incidence and prevalence of hypercholesterolemia in Portugal: a systematic review" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J. Costa" 1 => "M. Borges" 2 => "E. Oliveira" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Part I Rev Port Cardiol" "fecha" => "2003" "volumen" => "22" "paginaInicial" => "569" "paginaFinal" => "577" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic factors and cardiovascular disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M. Bourbon" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Rev Port Cardiol" "fecha" => "2008" "volumen" => "27" "paginaInicial" => "1559" "paginaFinal" => "1563" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19280996" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Update of the Portuguese Familial Hypercholesterolaemia Study" "autores" => array:1 [ 0 => array:3 [ "colaboracion" => "Investigators of the Portuguese FH Study" "etal" => true "autores" => array:3 [ 0 => "A.M. Medeiros" 1 => "A.C. Alves" 2 => "V. Francisco" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.atherosclerosis.2010.07.012" "Revista" => array:6 [ "tituloSerie" => "Atherosclerosis" "fecha" => "2010" "volumen" => "212" "paginaInicial" => "553" "paginaFinal" => "558" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20828696" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic susceptibility to coronary artery disease: from promise to progress" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "H. Watkins" 1 => "M. Farrall" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrg1805" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Genet" "fecha" => "2006" "volumen" => "7" "paginaInicial" => "163" "paginaFinal" => "173" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16462853" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Key concepts in genetic epidemiology" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P.R. Burton" 1 => "M.D. Tobin" 2 => "J.L. Hopper" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(05)67322-9" "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "2005" "volumen" => "366" "paginaInicial" => "941" "paginaFinal" => "951" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16154023" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "K. Musunuru" 1 => "A. Strong" 2 => "M. Frank-Kamenetsky" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature09266" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2010" "volumen" => "466" "paginaInicial" => "714" "paginaFinal" => "719" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20686566" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sorting out cholesterol and coronary artery disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P. Linsel-Nitschke" 1 => "N.J. Samani" 2 => "H. Schunkert" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1056/NEJMcibr1010765" "Revista" => array:6 [ "tituloSerie" => "N Engl J Med" "fecha" => "2010" "volumen" => "363" "paginaInicial" => "2462" "paginaFinal" => "2463" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21158662" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "M. Kjolby" 1 => "O.M. Andersen" 2 => "T. Breiderhoff" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cmet.2010.08.006" "Revista" => array:6 [ "tituloSerie" => "Cell Metab" "fecha" => "2010" "volumen" => "12" "paginaInicial" => "213" "paginaFinal" => "223" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20816088" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S. Kathiresan" 1 => "O. Melander" 2 => "C. Guiducci" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ng.75" "Revista" => array:6 [ "tituloSerie" => "Nat Genet" "fecha" => "2008" "volumen" => "40" "paginaInicial" => "189" "paginaFinal" => "197" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18193044" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genomewide association analysis of coronary artery disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "N.J. Samani" 1 => "J. Erdmann" 2 => "A.S. Hall" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1056/NEJMoa072366" "Revista" => array:6 [ "tituloSerie" => "N Engl J Med" "fecha" => "2007" "volumen" => "357" "paginaInicial" => "443" "paginaFinal" => "453" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17634449" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The novel genetic variant predisposing to coronary artery disease in the region of the PSRC1 and CELSR2 genes on chromosome 1 associates with serum cholesterol" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "N.J. Samani" 1 => "P.S. Braund" 2 => "J. Erdmann" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Mol Med (Berl)" "fecha" => "2008" "volumen" => "86" "paginaInicial" => "1233" "paginaFinal" => "1241" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Newly identified loci that influence lipid concentrations and risk of coronary artery disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "C.J. Willer" 1 => "S. Sanna" 2 => "A.U. Jackson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ng.76" "Revista" => array:6 [ "tituloSerie" => "Nat Genet" "fecha" => "2008" "volumen" => "40" "paginaInicial" => "161" "paginaFinal" => "169" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18193043" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "LDL-cholesterol concentrations: a genome-wide association study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "M.S. Sandhu" 1 => "D.M. Waterworth" 2 => "S.L. Debenham" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(08)60208-1" "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "2008" "volumen" => "371" "paginaInicial" => "483" "paginaFinal" => "491" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18262040" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genomewide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "C. Wallace" 1 => "S.J. Newhouse" 2 => "P. Braund" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ajhg.2007.11.001" "Revista" => array:6 [ "tituloSerie" => "Am J Hum Genet" "fecha" => "2008" "volumen" => "82" "paginaInicial" => "139" "paginaFinal" => "149" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18179892" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Large scale association analysis of novel genetic loci for coronary artery disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "N.J. Samani" 1 => "P. Deloukas" 2 => "J. Erdmann" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/ATVBAHA.108.181388" "Revista" => array:6 [ "tituloSerie" => "Arterioscler Thromb Vasc Biol" "fecha" => "2009" "volumen" => "29" "paginaInicial" => "774" "paginaFinal" => "780" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19164808" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cupples common variants at 30 loci contribute to polygenic dyslipidemia" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S. Kathiresan" 1 => "C.J. Willer" 2 => "G.M. Peloso" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ng.291" "Revista" => array:6 [ "tituloSerie" => "Nat Genet" "fecha" => "2009" "volumen" => "41" "paginaInicial" => "56" "paginaFinal" => "65" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19060906" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A common allele on chromosome 9 associated with coronary heart disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "R. McPherson" 1 => "A. Pertsemlidis" 2 => "N. Kavaslar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1142447" "Revista" => array:7 [ "tituloSerie" => "Science" "fecha" => "2007" "volumen" => "316" "paginaInicial" => "1488" "paginaFinal" => "1491" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17478681" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S1063458411002299" "estado" => "S300" "issn" => "10634584" ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A common variant on chromosome 9p21 affects the risk of myocardial infarction" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "A. Helgadottir" 1 => "G. Thorleifsson" 2 => "A. Manolescu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1142842" "Revista" => array:6 [ "tituloSerie" => "Science" "fecha" => "2007" "volumen" => "316" "paginaInicial" => "1491" "paginaFinal" => "1493" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17478679" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genomewide association study of 14,000 cases of seven common diseases and 3,000 shared controls" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "The Wellcome Trust Case Control Consortium" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature05911" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2007" "volumen" => "447" "paginaInicial" => "661" "paginaFinal" => "678" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17554300" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "M.S. Nielsen" 1 => "C. Jacobsen" 2 => "G. Olivecrona" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Biol Chem" "fecha" => "1999" "volumen" => "274" "paginaInicial" => "8832" "paginaFinal" => "8836" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10085125" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Endocytosis of apolipoprotein A-V by members of the low density lipoprotein receptor and the VPS10p domain receptor families" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S.K. Nilsson" 1 => "S. Christensen" 2 => "M.K. Raarup" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1074/jbc.M802721200" "Revista" => array:6 [ "tituloSerie" => "J Biol Chem" "fecha" => "2008" "volumen" => "283" "paginaInicial" => "25920" "paginaFinal" => "25927" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18603531" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J. Mazella" 1 => "N. Zsürger" 2 => "V. Navarro" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Biol Chem" "fecha" => "1998" "volumen" => "273" "paginaInicial" => "26273" "paginaFinal" => "26276" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9756851" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "C.M. Petersen" 1 => "M.S. Nielsen" 2 => "A. Nykjaer" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Biol Chem" "fecha" => "1997" "volumen" => "272" "paginaInicial" => "3599" "paginaFinal" => "3605" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9013611" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S. Lefrancois" 1 => "J. Zeng" 2 => "A.J. Hassan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/emboj/cdg629" "Revista" => array:6 [ "tituloSerie" => "EMBO J" "fecha" => "2003" "volumen" => "22" "paginaInicial" => "6430" "paginaFinal" => "6437" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14657016" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The sorting and trafficking of lysosomal proteins" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "X. Ni" 1 => "M. Canuel" 2 => "C.R. Morales" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Histol Histopathol" "fecha" => "2006" "volumen" => "21" "paginaInicial" => "899" "paginaFinal" => "913" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16691542" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sortilin mediates the lysosomal targeting of cathepsins D and H" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Canuel" 1 => "A. Korkidakis" 2 => "K. Konnyu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.bbrc.2008.06.021" "Revista" => array:6 [ "tituloSerie" => "Biochem Biophys Res Commun" "fecha" => "2008" "volumen" => "373" "paginaInicial" => "292" "paginaFinal" => "297" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18559255" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sortilin is essential and sufficient for the formation of Glut4 storage vesicles in 3T3-L1 adipocytes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J. Shi" 1 => "K.V. Kandror" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.devcel.2005.04.004" "Revista" => array:6 [ "tituloSerie" => "Dev Cell" "fecha" => "2005" "volumen" => "9" "paginaInicial" => "99" "paginaFinal" => "108" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15992544" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0160" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "C.B. Vaegter" 1 => "P. Jansen" 2 => "A.W. Fjorback" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/255" "Revista" => array:6 [ "tituloSerie" => "Nat Neurosci" "fecha" => "2011" "volumen" => "1" "paginaInicial" => "54" "paginaFinal" => "61" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10195109" "web" => "Medline" ] ] ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0165" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sorting out sortilin" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A.R. Tall" 1 => "D. Ai" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/RES.0b013e31820d7daa" "Revista" => array:6 [ "tituloSerie" => "Circ Res" "fecha" => "2011" "volumen" => "108" "paginaInicial" => "158" "paginaFinal" => "160" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21252148" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0170" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sortilin: an unusual suspect in cholesterol metabolism: from GWAS identification to in vivo biochemical analyses, sortilin has been identified as a novel mediator of human lipoprotein metabolism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J.B. Dubé" 1 => "C.T. Johansen" 2 => "R.A. Hegele" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/bies.201100003" "Revista" => array:5 [ "tituloSerie" => "Bioessays" "fecha" => "2011" "volumen" => "33" "paginaInicial" => "430" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21462369" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0175" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genome-wide association studies complemented with mechanistic biological studies identify sortilin 1 as a novel regulator of cholesterol trafficking" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.J. Marian" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11883-011-0168-1" "Revista" => array:6 [ "tituloSerie" => "Curr Atheroscler Rep" "fecha" => "2011" "volumen" => "13" "paginaInicial" => "190" "paginaFinal" => "192" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21287300" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0180" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mapping the genetic architecture of gene expression in human liver" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "E.E. Schadt" 1 => "C. Molony" 2 => "E. Chudin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pbio.0060107" "Revista" => array:5 [ "tituloSerie" => "PLoS Biol" "fecha" => "2008" "volumen" => "6" "paginaInicial" => "e107" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18462017" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0185" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.C. Russell" 1 => "S.D. Proctor" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.carpath.2006.09.001" "Revista" => array:6 [ "tituloSerie" => "Cardiovasc Pathol" "fecha" => "2006" "volumen" => "15" "paginaInicial" => "318" "paginaFinal" => "330" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17113010" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0190" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nature's genetic gradients and the clinical phenotype" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.J. Marian" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/CIRCGENETICS.109.921940" "Revista" => array:6 [ "tituloSerie" => "Circ Cardiovasc Genet" "fecha" => "2009" "volumen" => "2" "paginaInicial" => "537" "paginaFinal" => "539" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20031631" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0195" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Missing heritability and strategies for finding the underlying causes of complex disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "E.E. Eichler" 1 => "J. Flint" 2 => "G. Gibson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrg2809" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Genet" "fecha" => "2010" "volumen" => "11" "paginaInicial" => "446" "paginaFinal" => "450" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20479774" "web" => "Medline" ] ] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0200" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Uncovering the roles of rare variants in common disease through whole-genome sequencing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "E.T. Cirulli" 1 => "D.B. Goldstein" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrg2779" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Genet" "fecha" => "2010" "volumen" => "11" "paginaInicial" => "415" "paginaFinal" => "425" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20479773" "web" => "Medline" ] ] ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0205" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The diploid genome sequence of an Asian individual" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "J. Wang" 1 => "W. Wang" 2 => "R. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature07484" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2008" "volumen" => "456" "paginaInicial" => "60" "paginaFinal" => "65" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18987735" "web" => "Medline" ] ] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0210" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The diploid genome sequence of an individual human" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S. Levy" 1 => "G. Sutton" 2 => "P.C. Ng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pbio.0050254" "Revista" => array:5 [ "tituloSerie" => "PLoS Biol" "fecha" => "2007" "volumen" => "5" "paginaInicial" => "e254" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17803354" "web" => "Medline" ] ] ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0215" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The complete genome of an individual by massively parallel DNA sequencing" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "D.A. Wheeler" 1 => "M. Srinivasan" 2 => "M. Egholm" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature06884" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2008" "volumen" => "452" "paginaInicial" => "872" "paginaFinal" => "876" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18421352" "web" => "Medline" ] ] ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0220" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic variation in an individual human exome" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "P.C. Ng" 1 => "S. Levy" 2 => "J. Huang" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "PLoS Genet" "fecha" => "2008" "volumen" => "15" "paginaInicial" => "e1000160" ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0225" "etiqueta" => "45" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Targeted capture and massively parallel sequencing of 12 human exomes" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:3 [ 0 => "S.B. Ng" 1 => "E.H. Turner" 2 => "P.D. Robertson" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature08250" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2009" "volumen" => "461" "paginaInicial" => "272" "paginaFinal" => "276" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19684571" "web" => "Medline" ] ] ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0230" "etiqueta" => "46" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genomic «dark matter»: implications for understanding human disease mechanisms, diagnostics, and cures" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P. Kapranov" 1 => "G.S. Laurent" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fgene.2012.00095" "Revista" => array:5 [ "tituloSerie" => "Front Genet" "fecha" => "2012" "volumen" => "3" "paginaInicial" => "95" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22661986" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/21742049/0000003200000010/v1_201312121254/S2174204913001918/v1_201312121254/en/main.assets" "Apartado" => array:4 [ "identificador" => "9924" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Review Article" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/21742049/0000003200000010/v1_201312121254/S2174204913001918/v1_201312121254/en/main.pdf?idApp=UINPBA00004E&text.app=https://revportcardiol.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2174204913001918?idApp=UINPBA00004E" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 8 | 2 | 10 |
2024 October | 34 | 33 | 67 |
2024 September | 52 | 37 | 89 |
2024 August | 45 | 42 | 87 |
2024 July | 32 | 40 | 72 |
2024 June | 50 | 33 | 83 |
2024 May | 115 | 26 | 141 |
2024 April | 43 | 23 | 66 |
2024 March | 37 | 24 | 61 |
2024 February | 27 | 32 | 59 |
2024 January | 43 | 34 | 77 |
2023 December | 35 | 27 | 62 |
2023 November | 35 | 23 | 58 |
2023 October | 25 | 20 | 45 |
2023 September | 24 | 19 | 43 |
2023 August | 29 | 22 | 51 |
2023 July | 40 | 8 | 48 |
2023 June | 91 | 17 | 108 |
2023 May | 53 | 25 | 78 |
2023 April | 25 | 7 | 32 |
2023 March | 45 | 24 | 69 |
2023 February | 38 | 22 | 60 |
2023 January | 18 | 15 | 33 |
2022 December | 38 | 26 | 64 |
2022 November | 37 | 33 | 70 |
2022 October | 37 | 18 | 55 |
2022 September | 31 | 41 | 72 |
2022 August | 28 | 42 | 70 |
2022 July | 25 | 35 | 60 |
2022 June | 28 | 26 | 54 |
2022 May | 29 | 34 | 63 |
2022 April | 28 | 26 | 54 |
2022 March | 27 | 25 | 52 |
2022 February | 34 | 22 | 56 |
2022 January | 53 | 31 | 84 |
2021 December | 24 | 39 | 63 |
2021 November | 36 | 34 | 70 |
2021 October | 40 | 40 | 80 |
2021 September | 31 | 37 | 68 |
2021 August | 49 | 41 | 90 |
2021 July | 30 | 30 | 60 |
2021 June | 34 | 15 | 49 |
2021 May | 28 | 43 | 71 |
2021 April | 41 | 30 | 71 |
2021 March | 71 | 17 | 88 |
2021 February | 64 | 10 | 74 |
2021 January | 40 | 13 | 53 |
2020 December | 54 | 13 | 67 |
2020 November | 30 | 11 | 41 |
2020 October | 21 | 8 | 29 |
2020 September | 62 | 6 | 68 |
2020 August | 27 | 10 | 37 |
2020 July | 55 | 5 | 60 |
2020 June | 50 | 2 | 52 |
2020 May | 61 | 4 | 65 |
2020 April | 62 | 9 | 71 |
2020 March | 49 | 6 | 55 |
2020 February | 71 | 15 | 86 |
2020 January | 32 | 4 | 36 |
2019 December | 38 | 2 | 40 |
2019 November | 45 | 4 | 49 |
2019 October | 27 | 3 | 30 |
2019 September | 41 | 10 | 51 |
2019 August | 25 | 1 | 26 |
2019 July | 25 | 9 | 34 |
2019 June | 42 | 6 | 48 |
2019 May | 29 | 3 | 32 |
2019 April | 25 | 14 | 39 |
2019 March | 36 | 9 | 45 |
2019 February | 43 | 13 | 56 |
2019 January | 36 | 3 | 39 |
2018 December | 65 | 8 | 73 |
2018 November | 120 | 9 | 129 |
2018 October | 234 | 18 | 252 |
2018 September | 67 | 9 | 76 |
2018 August | 45 | 9 | 54 |
2018 July | 36 | 6 | 42 |
2018 June | 41 | 8 | 49 |
2018 May | 56 | 11 | 67 |
2018 April | 106 | 7 | 113 |
2018 March | 41 | 9 | 50 |
2018 February | 29 | 4 | 33 |
2018 January | 33 | 8 | 41 |
2017 December | 38 | 12 | 50 |
2017 November | 16 | 4 | 20 |
2017 October | 26 | 12 | 38 |
2017 September | 29 | 12 | 41 |
2017 August | 43 | 9 | 52 |
2017 July | 30 | 8 | 38 |
2017 June | 44 | 5 | 49 |
2017 May | 65 | 8 | 73 |
2017 April | 26 | 1 | 27 |
2017 March | 29 | 36 | 65 |
2017 February | 31 | 5 | 36 |
2017 January | 28 | 2 | 30 |
2016 December | 25 | 11 | 36 |
2016 November | 23 | 3 | 26 |
2016 October | 48 | 2 | 50 |
2016 September | 19 | 6 | 25 |
2016 August | 9 | 0 | 9 |
2016 July | 11 | 2 | 13 |
2016 June | 12 | 2 | 14 |
2016 May | 14 | 3 | 17 |
2016 April | 34 | 2 | 36 |
2016 March | 75 | 24 | 99 |
2016 February | 92 | 27 | 119 |
2016 January | 50 | 18 | 68 |
2015 December | 53 | 24 | 77 |
2015 November | 49 | 22 | 71 |
2015 October | 53 | 26 | 79 |
2015 September | 61 | 19 | 80 |
2015 August | 60 | 20 | 80 |
2015 July | 42 | 20 | 62 |
2015 June | 24 | 8 | 32 |
2015 May | 46 | 15 | 61 |
2015 April | 50 | 30 | 80 |
2015 March | 54 | 19 | 73 |
2015 February | 39 | 12 | 51 |
2015 January | 35 | 16 | 51 |
2014 December | 75 | 19 | 94 |
2014 November | 57 | 13 | 70 |
2014 October | 69 | 16 | 85 |
2014 September | 61 | 10 | 71 |
2014 August | 61 | 12 | 73 |
2014 July | 68 | 12 | 80 |
2014 June | 72 | 11 | 83 |
2014 May | 58 | 18 | 76 |
2014 April | 46 | 6 | 52 |
2014 March | 72 | 30 | 102 |
2014 February | 66 | 24 | 90 |
2014 January | 68 | 27 | 95 |
2013 December | 23 | 12 | 35 |