Revista Portuguesa de **Cardiologia**

Portuguese Journal of Cardiology

www.revportcardiol.org

ORIGINAL ARTICLE

Portuguese National Registry of Interventional Cardiology: Official report of percutaneous coronary angiography and intervention from 2014 to 2023

ardiolog

Rita Calé^{a,*}, Hélder Pereira^{a,aa}, André Luz^{b,ab}, Rui Campante Teles^{c,ac}, Marco Costa^d, João Carlos Silva^e, Pedro Braga^f, Pedro Pinto Cardoso^g, Rui Cruz Ferreira^h, Filipe Seixoⁱ, João Costa^j, Hélder Ribeiro^k, João Brum da Silveira^b, Pedro Costa Ferreira¹, Jorge Guardado^m, Pedro Farto e Abreuⁿ, Renato Fernandes^o, Hugo Vinhas^p, Dinis Martins^q, Graça Caires^r, Tiago Adrega^s, Rui Caria^t, Luís Bernardes^u, José Baptista^v, Pedro de Araújo Gonçalves^{w,ac}, Eduardo Infante Oliveira^x, Paulino Sousa^z, Carlos Braga^j, Pedro Jerónimo Sousa^m, Manuel Almeida^{c,ac}, on behalf of the researchers of the National Registry of Interventional Cardiology

- ^a Hospital Garcia de Orta EPE, Almada, Portugal
- ^b Centro Hospitalar do Porto Hospital de Santo António, Porto, Portugal
- ^c Centro Hospitalar de Lisboa Ocidental Hospital de Santa Cruz, Carnaxide, Portugal
- ^d Centro Hospitalar e Universitário de Coimbra CHC, Coimbra, Portugal
- ^e Centro Hospitalar de São João EPE, Porto, Portugal
- ^f Centro Hospitalar de Vila Nova de Gaia/Espinho Hospital Eduardo Santos Silva, Vila Nova de Gaia, Portugal
- ^g Centro Hospitalar de Lisboa Norte, EPE Hospital de Santa Maria, Lisboa, Portugal
- ^h Centro Hospitalar Lisboa Central, EPE Hospital de Santa Marta, Lisboa, Portugal
- ¹ Centro Hospitalar de Setúbal EPE Hospital de São Bernardo, Setúbal, Portugal
- ^j Hospital de Braga, EPE, Braga, Portugal
- ^k Centro Hospitalar de Trás-os Montes e Alto Douro EPE Hospital de Vila Real, Vila Real, Portugal
- ^l Hospital de São Teotónio Viseu, Portugal
- ^m Centro Hospitalar de Leiria, EPE Hospital Santo André, Leiria, Portugal
- ⁿ Hospital Professor Doutor Fernando da Fonseca EPE, Amadora, Portugal
- ° Hospital do Espírito Santo Évora, Évora, Portugal
- ^p Hospital de Faro EPE, Faro, Portugal
- ⁹ Hospital do Divino Espírito Santo de Ponta Delgada, EPE, São Miguel, Portugal
- ^r Hospital Central do Funchal, Funchal, Madeira, Portugal
- ^s Centro Hospitalar do Baixo Vouga, EPE, Aveiro, Portugal
- ^t Hospital da Cruz Vermelha Portuguesa, Lisboa, Portugal
- ^u Hospital CUF Tejo, Lisboa, Portugal
- ^v Unidade de Intervenção Cardiovascular Alvor, Algarve, Portugal

* Corresponding author.

E-mail addresses: ritacale@hotmail.com, ritatheotonio@ulsasmin-saude.pt (R. Calé).

https://doi.org/10.1016/j.repc.2024.12.003

^{0870-2551/© 2025} Sociedade Portuguesa de Cardiologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

" Hospital da Luz, Lisboa, Portugal

× Hospital Lusíadas, Lisboa, Portugal

^z Hospital CUF Porto, Porto, Portugal

^{aa} Centro Cardiovascular da Universidade de Lisboa-CCUL (CCUL@RISE), CAML, Faculdade de Medicina, Universidade de Lisboa, Portugal

^{ab} Medicine Department, Cardiovascular Research Group at UMIB, ICBAS, University of Porto, Porto, Portugal

^{ac} Comprehensive Health Research Center (CHRC), Nova Medical School, Lisboa, Portugal

Received 13 December 2024; accepted 26 December 2024 Available online 26 February 2025

PALAVRAS-CHAVE

Registo; Cardiologia de intervenção; Angiografia coronária; Angioplastia; *Stent*; Radial Registo Nacional de Cardiologia de Intervenção: Relatório Oficial de Angiografia e Intervenção Coronária Percutânea de 2014 a 2023

Resumo

Introdução e objetivos: Apresentar o relatório de atividade do Registo Nacional da Cardiologia de Intervenção (RNCI) com os dados da angiografia e intervenção coronária percutânea em Portugal na última década (de 2014 a 2023).

Métodos: Os dados foram baseados no RNCI e os números dos últimos anos foram comparados e complementados com a informação do Atlas ESC em Cardiologia de Intervenção (CI) de 2023, com um questionário que foi aplicado aos responsáveis de cada departamento de Cardiologia de Intervenção. Foi utilizada uma análise de regressão linear para avaliar as tendências de atividade ao longo do tempo.

Resultados: De 2014 a 2023, foram reportadas 160.101 intervenções coronárias percutâneas (ICP) no RNCI. O número anual de ICP na última década manteve-se constante (1360/milhão de habitantes em 2014 para 1322/milhão em 2023; $R^2 = 0,039$, p = 0,276). Por outro lado, verificou -se um aumento de 22% nas ICP primárias (306/milhão de habitantes em 2014 para 374/milhão de habitantes em 2023; $R^2 = 0,759$, p < 0,001) e uma redução das disparidades geográficas na penetração da ICP primária em todo o território nacional. As seguintes tendências em ICP foram observadas: um aumento de 43% nas ICP realizadas por acesso radial (57,4% em 2014 para 82,1%)

em 2023; $R^2 = 0.908$, p<0.001), um aumento de 27% no uso de *stents* farmacológicos (78,4% em 2014 para 99,2% de todas as ICP com *stents* em 2023; $R^2 = 0.638$, p=0.003) e uma redução de 47% na trombectomia durante ICP primária (35,0% em 2014 para 18,6% em 2023; $R^2 = 0.649$, p=0.003). Verificou-se um ligeiro aumento na utilização de dispositivos de diagnóstico intracoronário durante a ICP, com a imagiologia intravascular e as avaliações fisiológicas a atingirem 7,6% e 4,2%, respetivamente, em 2023.

Conclusão: O RNCI reflete as mudanças na nossa prática ao longo do período do estudo. O volume anual de ICP por milhão de habitantes manteve-se estável devido ao aumento da ICP primária, equilibrado pela diminuição das indicações por síndrome coronária crónica. As assimetrias geográficas foram significativamente reduzidas graças à expansão dos centros com capacidade para realizar ICP, traduzindo-se num acesso mais universal à intervenção percutânea coronária.

© 2025 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. Este é um artigo Open Access sob uma licença CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The Portuguese National Registry of Interventional Cardiology (RNCI) is a multicentric prospective voluntary registry that includes all consecutive percutaneous coronary intervention procedures since it was created in 2002¹ by the Portuguese Society of Cardiology (SPC).

The RNCI is headquartered at the National Center for Data Collection in Cardiology (CNCDC) and aims to continuously collect all activity within the scope of Interventional Cardiology occurring in all cardiac catheterization laboratories (cath labs) nationwide from public and private centers in mainland Portugal and the islands. It is the responsibility of Portuguese Association of Interventional Cardiology (APIC) to design, implement, develop, monitor, and support the RNCI.

To unify and standardize the collection, storage, and exchange of clinical data between our RNCI and other countries within Europe, the clinical data was collected based on the European Data Standards for Clinical Cardiology Practice (CARDS) developed by the European Society of Cardiology (ESC).² The primary goal of these standards is to improve the quality and consistency of clinical data, facilitating research, clinical practice, and evidence-based decision making.

Previous studies have documented the activity trends in National Interventional Cardiology during the periods 1992–2003 and 2004–2013, indicating a progressive increase in procedural volume over these years.^{3,4} A more specific analysis of primary angioplasty data from 2002 to 2013 showed that the rate per million inhabitants tripled during these years.⁵

Objectives

We aim to present the most recent results of the RNCI activity over the past ten years (2014–2023) as a continuity of the previously published data. The results of the present analysis will be discussed and compared with previous years and with data from other European registries.^{6,7}

Methods

The data collection for the RNCI is a process that involves the initial systematic collection of data at each catheterization laboratory (cath lab) by healthcare professionals, who are doctors, nurses, or technicians working in their respective units. This collection includes all percutaneous coronary intervention (PCI) procedures. Periodically, these data are sent to a centralized database in an anonymized format. In 2023, the data were extracted from 28 national cath labs, 20 public (one of them began activity and started submitting data in 2023) and eight private one (Supplementary Table 1), distribuged geographically as per Supplementary figure 1.

To assess the representativeness of gathered data and ensure they reflect the reality of the entire population, the RNCI figures for the year 2022 were compared with the information from the ESC Atlas in Interventional Cardiology (IC) survey 2023 (Supplementary Table 2 – data from procedures and resources for coronary intervention section), performed in the same year, with data sent by each cathlab in Portugal. This survey gathers information from 26 hospitals, of which 19 are public and seven are private.

In 2022, data collection from diagnostic procedures began. The data from diagnostic procedures from 2022 in the RNCI were also compared with the information from the ESC Atlas in IC survey for the same year.

Statistical analysis

Continuous variables were presented as mean \pm standard deviation, and a comparison between variables was performed with an independent t-Student test. Categorical variables were presented by numbers (n) and percentages (%) and a comparison between groups was performed using Qui-square test or Fisher's exact test, when appropriate.

The percentage difference of activity or devices used between the last and the first year was calculated using the following formula: % increase=100×(final absolute number-initial absolute number/initial).

Linear regression analysis was used to assess trends over time. The results are presented as the adjusted R-squared (R^2) .

R. Calé, H. Pereira, A. Luz et al.

Figure 1 Absolute number of PCI and PCI per million inhabitants between 2014 and 2023.

All reported p values were 2-sided and a p value <0.05 was considered statistically significant.

Statistical analysis was performed with IBM SPSS Statistics 29.0.2.0 (IBM Corp, Armonk, NY, USA).

Results

Over the past decade, all public IC centers have submitted their data to the RNCI. In 2014, there were 19 participating centers, with the addition of Centro Hospitalar Baixo Vouga in 2023, bringing the total to 20 centers. As for private centers, the number of exporting centers has been increasing over the years, with eight private centers exporting data in 2023 (Supplementary Table 1).

Coronary angiography

According to the ESC Atlas in IC survey, 32 519 diagnostic catheterization procedures were performed in 2022; the percentage of PCI relative to the number of diagnostic procedures was 43%. According to the RNCI, 23 427 coronary angiographies were recorded in 2022, representing 72% of the total diagnostic procedures performed that year.

Percutaneous coronary intervention

In 2014, a total of 14142 PCI were performed across the whole of continental Portugal and the islands, amounting to 1360 per million inhabitants. The numbers of PCI have remained constant over the past decade (R^2 =0.039, p=0.276), totaling 14070 PCI in 2023 (1322 per million inhabitants).

In 2022, PCI was performed in 14 386 cases. These figures are consistent with those reported by the ESC Atlas in IC

survey (Supplementary Table 2), demonstrating a high level of representativeness of the registry in relation to the total number of procedures performed annually in Portugal. By analyzing Figure 1, it is noticeable that there was a slight reduction in the total number of PCI in the year 2020 during the Covid-19 pandemic period (-10.6% compared to the year of 2019), which was followed by a recovery in the subsequent years.

In Figure 2, regional disparities in the use of PCI per million inhabitants are evident. Tagus Valley and Lisbon has the highest numbers of PCI per million inhabitants in Portugal, with the numbers remaining stable from 2014 (2113 PCI/million inhabitants) to 2022 (2061 PCI/million inhabitants). The Southern region and islands saw the most significant growth in PCI over the past decade (from 940 to 1254 PCI/million inhabitants). The rates of PCI remained stable in Northern and Central regions at close to 1100 PCI per million inhabitants.

Primary percuntaneous coronary intervention

Figure 3 illustrates the progression of primary angioplasty (pPCI) in Portugal from 2014 to 2023, presented in both absolute numbers and pPCI per million inhabitants. We observed a slight increase in the number of pPCI per million inhabitants over the years, with an incremental rate of 22% from 306 per million inhabitants in 2014 to 374 per million inhabitants in 2023 (R^2 =0.759, p<0.001). In 2022, we collected 4032 pPCI in the RNCI (385 pPCI per million inhabitants), representing 92% of the pPCI collected by the ESC Atlas in IC survey.

In 2014, the Central region had the lowest rate of primary PCI, with 178 pPCI per million inhabitants (Figure 4A). By 2022, this region had seen significant improvement, nearing the values of the Northern region at 296 pPCI

Figure 2 Geographic distribution of PCI per million inhabitants by region in Portugal in the years 2014 (A) and 2022 (B).

Total pPCI (n) — pPCI per million inhabitant

Figure 3 Absolute number of primary PCI and pPCI per million inhabitants between 2014 and 2023.

per million inhabitants (Figure 4B). The region with the highest pPCI values over the last decade has been Tagus Valley and Lisbon (525 per million inhabitants in 2022). In the Southern region, an increase in pPCI numbers was also observed from 2014 to 2022 (272–392 per million inhabitant).

In the last decade, there has been a slight overall increase in the absolute number of PCI conducted in the context of acute coronary syndromes, primarily due to a rise in procedures related to ST-elevation myocardial infarction (R^2 =0.837, p<0.001). In contrast, the number of PCIs performed for non-ST acute coronary syndromes has remained stable (R^2 =0.250, p=0.100). Notably, a significant change was observed during the COVID-19 pandemic and subsequent years, marked by a reduction in the number of PCIs performed for chronic coronary syndromes (R^2 =0.581, p=0.006) (Figure 5).

Complex percutaneous coronary intervention

Over the past decade, there has been an increase in multivessel disease in patients treated with PCI (Figure 6), accounting for 30.3% of intervention cases in 2014 compared to 55.8% in 2023 (R^2 =0.875, p<0.001). Although, the number of procedures involving multivessel PCI has increased over the years (R^2 =0.651, p=0.003), the percentage of its utilization in the same procedure remains low, averaging 9.5% overall years. The number of PCI for additional vessels that were deferred to a second procedure is unknown.

Over the years, the average use of angioplasty in complex anatomies registered in the RNCI were: 7.7% in bifurcations, 2.8% in left main, 1.0% in chronic total occlusions, and 3.7% in stent restenosis.

In 2022, according to data from the RNCI, PCI was used in complex anatomies as follows: 5.6% in bifurcations

Figure 4 Geographic distribution of pPCI per million inhabitants by region in Portugal in the years 2014 (A) and 2022 (B).

Figure 5 Distribution of PCI indications from 2014 to 2023 (indication documented in 85.8% of cases). CCS: chronic coronary syndrome; NSTEMI: non-ST elevation myocardial infarction; STEMI: ST-elevation myocardial infarction; UA: unstable angina.

(n=595/10554), 3.6% in left main (n=480/13252), 1.7% in chronic total occlusions (n=230/13252) and 3.5% in stent restenosis (n=462/13252). In the ESC Atlas IC survey, PCI was used for complex anatomies in 5.7% (594/10331) for chronic total occlusions, 5.1% (629/12307) for unprotected left main, 7.4% (713/9611) for in-stent restenosis.

Stents

Stents were used on average in 91.8% of cases, with a significant increase in the use of drug-eluting stents (DES) in the last decade (78.4% in 2014 to 99.2% of all PCI with stents in 2023; R^2 =0.638, p=0.003), approaching almost 100% in recent years. In 2014, bioresorbable vascular scaffold (BVS) were used in 1% of angioplasties with a peak use in 2015 with

1.3% of cases, followed by a decrease in the following years. From 2018 to 2022, there are no records of use of BVS.

In 2022, stents were used in 88.5% of coronary angioplasties and according to data from the ESC Atlas IC survey PCI performed with the use of any drug-eluting balloon was 6.3%. No BVS was reported in this survey.

Other coronary intervention devices

Manual thrombectomy in primary angioplasty has declined significantly over the past decade from 35.0% in 2014 to 18.6% in 2023 (R²=0.649, p=0.003; Figure 7).

The rate of rotational atherectomy has remained <2% over the years. Although its application remains limited to a small proportion of PCI procedures performed annually,

Figure 6 Presence of multivessel disease in PCI and of multivessel PCI in the same procedure between the years 2014 and 2023.

there has been a consistent upward trend in its use over the past decade, increasing from 1.0% in 2014 to 1.9% in both 2021 and 2022 (R^2 =0.452, p=0.021; Figure 7). In 2022, the percentage of atherectomy use in the RNCI was 1.9%, similar to the results reported in the ESC Atlas in IC survey (2.1%).

Left ventricular mechanical support devices were used in less than 1% of PCI (Figure 7); 0.9% were reported in 2022 according to the RNCI and 1.0% according to the survey. Their usage has remained stable over the years (R^2 =0.074, p=0.234).

Intracoronary diagnostic devices

The use of a pressure wire during PCI has seen a modest increase over the past decade (R^2 =0.430, p=0.024), reaching a plateau in recent years at around 4.2%. In contrast, there has been a more marked growth in the use of intravascular ultrasound imaging both as a diagnostic tool and as a guide for angioplasty, with usage rates varying from 1.9% in 2014 to 7.6% in 2023 (R^2 =0.907, p<0.001; Figure 8).

In the ESC Atlas in IC survey, in 2022, the PCI use rates with adjunctive intracoronary imaging techniques and physiology measurements were 7.8% and 5.7%, respectively. Additionally, the use of adjunctive intracoronary physiology measurements in procedures (coronary angiography and PCI) was 4.8%.

Antithrombotic treatment during percutaneous coronary intervention

Regarding the drugs used during PCI, glycoprotein IIb/IIIa inhibitors have been used less frequently ($R^2=0.446$,

p=0.021); the highest usage rate was recorded in 2014 (5.8%) and the lowest in 2018 (2.4%) – see Figure 7.

Regarding the anticoagulant used during PCI, unfractionated heparin is the most used. The use of low molecular weight heparins are minimal, averaging approximately 3.0%, and has declined in recent years from 4.1% in 2014 to 0.2%in 2023 (R²=0.867, p<0.001; Figure 7). There are no records of bivalirudin being use in the period of the study.

Vascular access for percutaneous intervention

Radial access has become the preferred access for PCI over the past decade, with rates progressively increasing to a peak of 82.1% in 2023 (R^2 =0.908, p<0.001; Figure 9). The use of femoral access has evolved in the opposite direction, progressively decreasing over the past few years. The use of cubital access is minimal, with an average utilization rate of 0.3% over the past decade. In the year 2022, the number of coronary angiographies performed via radial access was 90.8%. In the ESC Atlas in IC survey, PCI performed via transradial access was 86.1%.

Discussion

The RNCI is a comprehensive and powerful tool to study the national development of interventional cardiology practices, their regional trends, and benchmarking each cath lab in Portugal. These data are crucial for healthcare professionals and policymakers in their process of decision making, thereby driving initiatives aimed at reducing disparities in cardiovascular disease burden.

Figure 7 Evolution of devices and drugs between the years 2014 and 2023. LMWH: low molecular weight heparin during PCI; MCS: mechanical circulatory support.

Figure 8 Adjuvant diagnostic devices used during PCI between the years 2014 and 2023.

The registry, initiated in 2002 by SPC President Ricardo Seabra-Gomes and expanded in 2013 under APIC President Helder Pereira to include all public centers, has evolved through multiple revisions, the latest in 2022 led by a Taskforce coordinated by Rui Campante Teles.⁴ It now collects consecutive PCI data from 28 public and private centers. When comparing the total number of PCI and primary PCI in 2022, from two different sources, the RNCI and data from the ESC Atlas in IC survey sent to all coordinators of national public and private cath labs, the numbers are very similar (102% and 92%, respectively). The representiveness of the presented figures is reinforced by the fact that data from consecutive coronary interventional procedures were

Figure 9 Vascular access for percutaneous coronary intervention between 2014 and 2023.

received from all public centers nationwide and most private centers; most data were sent automatically and digitally.

Regarding coronary angiographies, the data are not as representative as for PCI. Currently, the RNCI have approximately three-quarters of all diagnostic procedures from 2022, when compared to the 2022 ESC Atlas IC survey. Routine transfer for diagnostic procedure data started later and is currently in a phase of progressive implementation.

It is important to have data on coronary diagnostic procedures for several reasons. It is the only way to assess whether patients with acute myocardial infarction proposed for invasive strategy are being treated with angioplasty versus medical or surgical therapy. Additionally, it enables us to evaluate the percentage use of invasive diagnostic methods such as physiological assessments for diagnosing functionally significant coronary artery disease (CAD).

Regarding PCI, the observed growth at the beginning of the 21st century reached a plateau in the last decade. From 2004 to 2008, growth was at 37%, compared to 20% between 2009 and 2013, and a decrease of 0.5% from 2014 to 2023.⁴ There was a slight reduction in the number of PCI in 2020 due to the lockdown period of the COVID-19 pandemic (-10.6%compared to the year of 2019), explained by the temporary suspension of some elective activities and redeployment of cardiovascular resources to the care of Covid-19 patients. The reduction in PCI is similar to preliminary results from the ESC Atlas project, which reported a median PCI change of -9.0% between 2019 and 2020 across 31 ESC members.⁶

In the subsequent years, the total number of PCI were similar to numbers from 2014.

Similarly to the COURAGE⁸ study published in 2007, the ISCHEMIA trial,⁹ published in 2020, did also not affect the total number of PCIs performed nationwide. However, it may have contributed to the observed reduction in PCIs for chronic coronary syndromes beginning that year and which persisting over the following years. If this reduction were solely attributable to the Covid-19 pandemic, a recovery in the volume of procedures for this specific context would have been expected in the subsequent years; however, this recovery was not observed.

The 1322 PCI per million inhabitants performed in 2023 were similar to 1333 PCI per million inhabitants performed ten years earlier, in 2013. Both figures are markedly lower than the median of 2186 PCI procedures per million inhabitants reported for ESC member countries (IQR 1383–2494) reported in the 2023 ESC Atlas Project,¹⁰ as well as Spain, with 1573 PCI per million inhabitants in 2022.⁷

Data on primary PCI indicate a more attenuated growth in the last decade, a 22% increase from 2014 to 2023, compared to a 62% increase from 2004 to 2013, but still, in 2023, the rate stood at only 374 pPCI per million inhabitants, significantly below the median of 498.5 (IQR 420.2-636.3) pPCI procedures per million inhabitants in ESC member countries as reported by 2023 ESC Atlas survey¹⁰; and the target of 600 pPCI per million inhabitants per year recommended by the European Association of Percutaneous Cardiovascular Interventions.¹¹ The figures are close the median of 311.8 (IQR 37.0-650.1) pPCI procedures per million inhabitants observed in middle-income countries, yet remain considerably below the rates in high-income countries (533.7; IQR 429.8-661.0).⁶ Despite the robust growth over the last 20 years, aligning with trends in Southern European countries, which often report values significantly lower than 600 pPCI per million inhabitants, the rates of pPCI in Portugal remain lower than those reported in Spain, which had 452 per million inhabitants in 2022.7

Despite all the efforts in the last decade, such as community campaign actions and improvement of interinstitutional cooperation, the numbers are still below the European average and those of our neighbor, Spain. This strongly indicates that there are still areas for improvement in the coming years.

Several factors contribute to Portugal's lower rates of pPCI compared to Northern European countries and Spain, including differences in disease prevalence, the availability of healthcare resources, and levels of healthcare literacy among the population. Regional disparities and demographic factors within Portugal, such as urban-rural divides and population density, impact the equitable distribution and accessibility of healthcare services, including primary angio-plasty. This report demonstrates these disparities, with the

Central region showing lower pPCI rates per million inhabitants. However, these regional asymmetries have diminished over the past decade. The Tagus Valley and Lisbon region, with the highest pPCI rates, reported 473 per million inhabitants in 2014 and 525 per million inhabitants in 2022. The Central region, which had the lowest rate of 178 per million inhabitants in 2014, improved to 296 per million inhabitants in 2022, approaching the Northern region's values. The pPCI numbers in the Central region may improve further in the coming years with the recent opening of a new cath lab in the interior central region (Guarda district) at the beginning of 2024. The Southern region and islands also showed growth from 272 per million inhabitants in 2014 to 392 per million inhabitants in 2022. The improved rates in the Central region may be attributed to the opening of new cath labs, particularly at the Leiria Hospital Center. In the South, population growth due to the influx of non-resident foreigners and tourism may have contributed to the increase in pPCI rates.

Regarding the complex procedures, despite operators having more experience in treating complex disease, the number of procedures involving bifurcations (7.7%), the left main coronary artery (2.8%), chronic occlusions (1.0%), and restenosis (3.7%) has remained low over the years. These low numbers may be underestimated compared to the actual figures due to the potential influence of missing data in the database entries at each local cath lab. This statement is supported by the slightly higher numbers of complex PCI reported in the ESC Atlas in IC survey, although these are still below 10%. While operators are increasingly skilled in managing complex coronary disease, the low percentage of PCIs in complex anatomies, could reflects both strategic decisions in patient care due to anticipated technical challenges and recent scientific data reporting privileging a more conservative approach for stable coronary disease as there are a higher risk associated with procedures in these anatomical settings and a higher risk of target lesion failure on the long-term. This may influence the decision-making process, leading to conservative management approaches or alternative treatment strategies, such as cardiac bypass surgery. On the other hand, the reported low percentages may also be influenced by missing or incomplete data in the RNCI or in the survey, which could underestimate the actual prevalence of these procedures. The level of detail collected in the RNCI may be insufficient to capture specific aspects of procedural complexity, such as PCI in the setting of complex calcified coronary disease or the use of advanced techniques, such as lithotripsy.

Stents remain the primary treatment for obstructive CAD, with DES being increasingly favored in recent years, eliminating conventional bare-metal stents. BVS were utilized in a minority of cases from 2014 to 2017; however, following the publication of the three-year follow-up of ABSORB III trial,¹² which highlighted a heightened risk of stent thrombosis with BVS compared to conventional DES, their use was discontinued in 2018.

Registry data do not include information on the utilization of drug-coated balloons. Survey data suggest their occasional use as a substitution for stents, albeit in a limited proportion of cases. Nevertheless, extracting these specifics from the RNCI is challenging. Regarding other adjunctive coronary intervention devices, the last decade has seen a significant decrease in the use of manual thrombectomy in primary angioplasty, as a result of the findings from the TASTE^{13,14} and TOTAL¹⁵ trials, which found no significant differences in 30-day mortality and major adverse cardiovascular events in the routine use of thrombus aspiration before PCI as compared with PCI alone. Additionally, the TOTAL trial even indicated an increased risk of stroke in patients undergoing the technique.¹⁵ These results led to a revision of clinical guidelines. Currently, routine use of thrombus aspiration is not recommended and the technique should be reserved for specific cases, such as in situations with large amounts of visible thrombus.¹⁶

The use of image-guided angioplasty has slightly increased over the past decade, though it remains lower than in Spain, where imaging techniques (IVUS and OCT) were used in 14.7% of PCIs in 2022.¹⁷ The use of physiology has also gradually increased over the years; however, in the past year, it showed no growth, in contrast to Spain, where the use of physiology rose by 6.3% in 2022 compared to 2021.¹⁷ Despite the increasing body of evidence supporting the use of imaging and physiological assessments to guide PCI, several barriers continue to hinder the widespread adoption of these technologies in national cath labs. A significant barrier is the perception of time constraints; integrating intravascular imaging or physiological assessments may prolong the duration of interventions, thereby potentially reducing the number of procedures that can be performed within a given timeframe. Additionally, the lack of adequate training or expertise and the associated costs of these technologies further hinders their adoption. To enhance the utilization of these cost-benefit devices, there is a need to integrate them into cath lab workflows and to provide education to healthcare professionals of all categories.

Regarding vascular access for PCI, the radial approach has gained prominence over the past decade, becoming the preferred access route for most procedures.¹⁸ This shift coincided with a decline in the use of femoral access. In the last decade, randomized studies that compared radial access with femoral access, such as the RIVAL,¹⁹ RIFLE-STEACS²⁰ and MATRIX²¹ trials, have reinforced the importance of prioritizing radial access as the default approach, as it is considered safer with a lower risk of vascular and hemorrhagic complications and hard end points during follow-up.

Conclusion

The RNCI achieved robustness in the data on intervention procedures, but there is still room for improvement regarding the data on diagnostic procedures and complex angioplasty, including the use of adjuntive devices to diagnose and treat coronary disese.

In the last 10 years, IC reached a plateau in terms of the number of PCIs performed per year. In contrast, there has been a steady increase in primary PCI and a reduction in geographical asymmetries, although it remains below the median of European countries. In several instances, national IC has followed clinical evidence, with increased utilization of radial access and DES, and a reduced use of manual thrombectomy in primary angioplasty. In other fields, such as intravascular imaging and physiology, there is potential for improvement in the following years.

Ethical disclosures

Protection of human and animal subjects. The authors declare that no experiments were performed on humans or animals for this study.

Confidentiality of data. The authors declare that they have followed the protocols of their work center on the publication of patient data.

Right to privacy and informed consent. The authors declare that no patient data appear in this article.

Conflicts of interest

The authors have no conflicts of interest to declare.

Acknowledgments

We would like to thank Maria Fátima Loureiro, who was the biostatistician at the National Center for Data Collection in Cardiology (CNCDC) at the time of the study, for her collaboration in processing the data from the Portuguese National Registry of Interventional Cardiology. Additionally, we extend our gratitude to all healthcare professionals who diligently record data in the registry at their respective centers.

Appendix A. Supplementary data

Supplementary material associated with this article can be found in the online version at https://doi.org/10.1016/j.repc.2024.12.003.

References

- 1. Pereira H. The 2002 Portuguese Interventional Cardiology Registry. Rev Port Cardiol. 2004;23:7–14.
- 2. Flynn MR, Barrett C, Cosio FG, et al. The Cardiology Audit and Registration Data Standards (CARDS) European data standards for clinical cardiology practice. Eur Heart J. 2005;26:308–13.
- Pereira H, Patricio L, Magalhaes D, et al. The Portuguese Interventional Cardiology Registry from 1992 to 2003. Rev Port Cardiol. 2006;25:141–51.
- 4. Pereira H, Teles RC, Costa M, et al. Trends in percutaneous coronary intervention from 2004 to 2013 according to the Portuguese National Registry of Interventional Cardiology. Rev Port Cardiol. 2015;34:673–81.
- 5. Pereira H, Campante Teles R, Costa M, et al. Trends in primary angioplasty in Portugal from 2002 to 2013 according to the Por-

tuguese National Registry of Interventional Cardiology. Rev Port Cardiol. 2016;35:395–404.

- 6. Timmis A, Vardas P, Townsend N, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022;43:716–99.
- 7. Jurado-Roman A, Freixa X, Cid B, et al. Spanish cardiac catheterization and coronary intervention registry 32nd official report of the Interventional Cardiology Association of the Spanish Society of Cardiology (1990–2022). Rev Esp Cardiol (Engl Ed). 2023;76:1021–31.
- Boden WE, O'Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16.
- Maron DJ, Hochman JS, Reynolds HR, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020;382:1395–407.
- Timmis A, Aboyans V, Vardas P, et al. European Society of Cardiology: the 2023 Atlas of Cardiovascular Disease Statistics. Eur Heart J. 2024;45:4019–62.
- Widimsky P, Wijns W, Fajadet J, et al. Reperfusion therapy for ST elevation acute myocardial infarction in Europe: description of the current situation in 30 countries. Eur Heart J. 2010;31:943–57.
- 12. Kereiakes DJ, Ellis SG, Metzger C, et al. 3-Year clinical outcomes with everolimus-eluting bioresorbable coronary scaffolds: the ABSORB III trial. J Am Coll Cardiol. 2017;70:2852–62.
- Frobert O, Lagerqvist B, Olivecrona GK, et al. Thrombus aspiration during ST-segment elevation myocardial infarction. N Engl J Med. 2013;369:1587–97.
- Lagerqvist B, Frobert O, Olivecrona GK, et al. Outcomes 1 year after thrombus aspiration for myocardial infarction. N Engl J Med. 2014;371:1111–20.
- **15.** Jolly SS, Cairns JA, Yusuf S, et al. Randomized trial of primary PCI with or without routine manual thrombectomy. N Engl J Med. 2015;372:1389–98.
- Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165.
- Freixa X, Jurado-Roman A, Cid B, et al. Spanish cardiac catheterization and coronary intervention registry 31st official report of the Interventional Cardiology Association of the Spanish Society of Cardiology (1990–2021). Rev Esp Cardiol (Engl Ed). 2022;75:1040–9.
- Teles RC, Pires-Morais G, da Silva PC, et al. Portugal: coronary and structural heart interventions from 2010 to 2015. EuroIntervention. 2017;13:Z55-8, http://dx.doi.org/10.4244/EIJ-D-16-00831.
- **19.** Jolly SS, Yusuf S, Cairns J, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011;377:1409–20.
- 20. Romagnoli E, Biondi-Zoccai G, Sciahbasi A, et al. Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: the RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) study. J Am Coll Cardiol. 2012;60:2481–9.
- 21. Valgimigli M, Frigoli E, Leonardi S, et al. Radial versus femoral access and bivalirudin versus unfractionated heparin in invasively managed patients with acute coronary syndrome (MATRIX): final 1-year results of a multicentre, randomised controlled trial. Lancet. 2018;392:835–48.