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Resumo 

As ferramentas de saúde digital (por exemplo, telemedicina, mobile health, 

inteligência artificial, big data, robótica, extended reality, simulações computacionais 

e simulações de bancada de alta-fidelidade) são parte integrante do caminho rumo à 

medicina de precisão. A sua aplicação cobre várias áreas, tais como: modificação de 

fatores de risco, gestão de doenças crónicas, apoio à decisão clínica, interpretação de 

meios complementares de diagnóstico, planeamento de procedimentos, investigação, 

educação e formação. Apesar do reconhecido potencial, o seu desenvolvimento e 

implementação tem enfrentado vários desafios e constrangimentos, o que faz com que 

o número de ferramentas de saúde digital utilizado na prática clínica diária seja 

reduzido. Assim, o Grupo de Estudo de Saúde Digital da Sociedade Portuguesa de 

Cardiologia pretende delinear as principais aplicações das ferramentas de saúde digital 

na medicina cardiovascular, abordar alguns dos obstáculos que dificultam a sua 

implantação em larga escala e discutir perspetivas futuras na promoção da saúde 

cardiovascular. 

 

 

 

 

ABSTRACT 

Digital health interventions including telehealth, mobile health, artificial intelligence, big 

data, robotics, extended reality, computational and high-fidelity bench simulations are an 

integral part of the path toward precision medicine. Current applications encompass risk 

factor modification, chronic disease management, clinical decision support, diagnostics 

interpretation, preprocedural planning, evidence generation, education, and training. 

Despite the acknowledged potential, their development and implementation have faced 

several challenges and constraints, meaning few digital health tools have reached daily 

clinical practice. As a result, the Portuguese Society of Cardiology Study Group on 

Digital Health set out to outline the main digital health applications, address some of the 

roadblocks hampering large-scale deployment, and discuss future directions in support of 

cardiovascular health at large. 
PALAVRAS-CHAVE 

eHealth; mHealth; Telemedicina; Medicina de precisão; Inteligência artificial; Big 

data; Simulação; Robótica; Doença cardiovascular; Cardiologia 

 

Keywords: eHealth; mHealth; telehealth; precision medicine; artificial intelligence; big 

data; simulation; robotics; cardiovascular disease; cardiology. 
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INTRODUCTION 

As the population ages and the burden of cardiovascular (CV) disease continues to grow, 

increasing strain is placed on healthcare systems.1,2 The diagnostic and therapeutic 

advances made in recent years are noteworthy, yet their translation into day-to-day 

practice is often hampered by limited trial generalizability, inequitable access, financial 

constraints, shortage/uneven distribution of health professionals, and inefficient 

organization systems.3,4 

Digital health interventions (DHI) have the potential to help mitigate some of these 

shortcomings and improve outcomes across the spectrum of CV care.5 From prevention 

to treatment, these strategies can contribute to timely high-quality care delivery by 

extending access6, enhancing adherence7, increasing patient engagement8, providing 

evidence-based decision support9, automating tasks10, and streamlining research.11 

Furthermore, through large-volume data mining and analysis, these technologies hold the 

promise of deepening our understanding of disease processes on an individual basis, 

leading to refined risk prediction and personalized management choices.12 

The development of digital health solutions is happening at an unprecedented scale, 

especially since the COVID-19 pandemic (Figure 1).13,14 However, uptake beyond 

telemedicine and electronic health records (EHR) has been slow, meaning DHI’s 
immense potential remains largely untapped.15 Concerns over data security, 

interoperability, cost, and efficacy impede widespread adoption and should be 

addressed.16,17 

In this paper, the Portuguese Society of Cardiology Study Group on Digital Health 

(‘Grupo de Estudos de Saúde Digital da Sociedade Portuguesa de Cardiologia’) 
highlights the main digital health applications and their impact on the CV field; reviews 

the most relevant roadblocks and pitfalls; and discusses future directions for improved 

CV care, research, and training. 

 

KEY TERMS AND DEFINITIONS 

Digital health is an umbrella term for the use of information and communication 

technologies for health-related matters, including patient care, health surveillance, 

education, and research.18 It encompasses various services and tools, some of which are 

highlighted in Table 1. Although we present them individually, it is important to note that 

these tools are often interdependent and have synergistic effects that will be discussed in 

the following section. 

CLINICAL USES AND IMPACT 

1. Telehealth and m-Health 

Telehealth and m-health technologies allow patients to assume a more proactive role in 

the management of their health.15 By fading time and space boundaries, they offer the 

opportunity to continue care outside the clinic or hospital ward, benefiting both patients 

and healthcare systems.26 Here we provide some examples of their usefulness in four key 

areas: wellness promotion, risk factor modification, medication compliance and chronic 

disease management. 
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1.1 Cardiovascular wellness promotion 
Contemporary devices (e.g. smartwatches, chest straps, sensor-embedded clothing, etc.) 

can measure several physiological parameters, including heart rate, blood pressure, 

oxygen saturation (photoplethysmography); movement and its intensity (accelerometer, 

barometer and gyroscope); single and multi-lead electrocardiograms (ECG).27 Advanced 

signal processing algorithms allow assessment of more complex parameters including 

sleep, six-minute walk test, maximum oxygen consumption, heart rhythm, falls, and so 

forth. Through positive reinforcement, gamification and other behavioral science 

approaches, this data can be leveraged to encourage positive lifestyle changes, such as 

increasing physical activity, for example.27 Conversely, these consumer-directed products 

also come with the risk of overmedicalizing normal physiology, which may lead to futile 

(and even harmful) diagnostics and treatments.28 Moreover, this means an avalanche of 

data is coming. Although it is good to have more information available for the decision-

making process, its utilization within current clinic time constraints is challenging. 

Further refinements and swift integration in the EHR infrastructure are required.15 

 

1.2 Risk factor modification and medication compliance 

The same principles apply to risk factor management. Patients and physicians can track 

relevant data (e.g. blood pressure, weight, physical activity, glycemia, lipid levels, etc.) 

at a distance and act on it promptly without any visit to the clinic. Mobile phone-based 

interventions have demonstrated meaningful improvement in blood pressure control29, 

smoking cessation rates30, body mass index29 and medication adherence.31 For example, 

the MedApp-CHD randomized clinical trial showed that medication reminder apps 

improved medication adherence in patients with coronary heart disease.32 Interestingly, 

in this study, advanced app features did not provide incremental value compared to the 

basic app design32. Similarly, the HERB-DH1 randomized controlled trial also provided 

evidence of added value in hypertension management with the use of a personalized non-

pharmacologic program generated by a smartphone app.33 On the other hand, in the 

CONNECT trial, a consumer ‘app’ connected to the primary care EHR failed to increase 
medication adherence and blood pressure control.34 Taken together, data from 

preliminary trials and meta-analyses suggest that these interventions benefit people with 

CV disease, although the effect sizes are modest and their durability remains unknown.35 

Importantly, like any other intervention, DHI can only be effective if they are utilized. 

Factors such as simplicity of use, personalization, and privacy policies should be carefully 

considered to maximize potential benefit.17 

 

1.3 Chronic disease monitoring and management 
Remote monitoring is particularly important in chronic conditions, such as heart failure 

(HF), where early detection of clinical worsening and telemanagement are crucial to 

improve quality of life, reduce hospitalizations and lower mortality rates.36,37 Virtual 

consultations, ‘apps’ and ‘wearables’ can be used to track relevant invasive and non-

invasive parameters (signs and symptoms38, thoracic impedance39,40, pulmonary artery 

pressure41,42; lung fluid content43; etc.) and facilitate timely interventions (e.g. diuretic 

adjustment). In the IN-TIME and MultiSENSE trials multiparameter remote monitoring 

via implantable cardiac devices led to significant reductions in hospitalization and 

symptom improvement.40,44 Similarly, non-invasive lung water content monitoring (via 

dielectric sensing) bared substantial reduction of the rehospitalization rate in early 

observational data (87% less hospitalizations compared with the 90 days prior to 

enrollment).43 A follow-up clinical trial is ongoing (NCT03586336) as the search for the 

optimal, ideally non-invasive, indicator(s) of volume status continues. 
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Additional challenges in HF management include rapid initiation and up-titration of 

guideline-directed medical therapy. For example, the high-intensity care model of the 

STRONG-HF trial45 is difficult to replicate in real-world clinical settings. 

Teleconsultations and EHR-based alert systems may also help accelerate the adoption of 

proven therapies.46 Virtual consultations are one of the most used and one of the most 

well received DHI (by patients and physicians).47,48 Of note, besides facilitating patient 

encounters, virtual consultations also enable clinician to clinician interaction for consults 

and second opinion.15 

Importantly, m-Health is also playing a meaningful role in research. For example, the 

authors of the recent ORBITA-2 and the upcoming ORBITA-COSMIC and ORBITA-

STAR trials developed an app to assess daily angina burden in a cost and time-effective 

manner that reduces the recall bias associated with measurement of such outcomes.49,50 

Photoplethysmography-based heart rhythm and rate monitoring was used during COVID-

19 to remotely follow-up atrial fibrillation (AF) patients.51 This app-based interface 

enabled 25 European centers to manage the data of 1480 patients remotely, including 

post-AF ablation. In the future, such technologies, as a supplement to traditional face-to-

face consultations, may improve patient surveillance, avoid unnecessary hospital visits, 

and optimize scarce clinical resources. 

 

2. Artificial intelligence and big data 

Big data is often defined by the five “vs”: volume (up to yottabytes), velocity (rapid 

generation and accumulation of new data), variety (diverse data formats and sources, e.g. 

clinical, omics, infodemiological, etc.), veracity (indeterminable; datasets are too vast to 

be verified), and value (what it adds to current knowledge).52 The latter is largely 

dependent on the use of advanced analytics, such as artificial intelligence (AI)/machine 

learning (Figure 2). Its ability to detect signals and patterns, beyond what a human can 

recognize, offers the opportunity to extract actionable information from these ever-

growing datasets. Here we focus on some examples of the intersections between big data 

and AI, and their roles in cardiovascular medicine. 

 

2.1 Electrocardiogram interpretation 
Widespread electrocardiogram (ECG) digitization and the development of these new 

algorithms that can sieve through massive amounts of raw data have revived the interest 

in automated ECG interpretation.53 Unlike initial versions that relied on discrete 

measurements and rule-based approaches, current models focus on pattern recognition at 

large. There are numerous successful examples in the literature, particularly with deep 

neural networks trained on large datasets of single and 12-lead ECGs, that at least match 

and even outperform experts.53,54 Moreover, these neural networks are also being used to 

uncover additional subtleties that allow them to determine the ejection fraction55, 

hemoglobin value56, age and sex57, AF risk (while in sinus rhythm)58, presence of 

hypertrophic cardiomyopathy59, pulmonary embolism60, among many other conditions. 

In doing so, these algorithms augment the ECG’s diagnostic scope and power. Given its 
wide availability, inexpensiveness and relative simplicity, AI-augmented ECG can be 

particularly useful in triage and follow-up, for example, of patients at risk for ventricular 

dysfunction, such as heart transplant recipients and those receiving cardiotoxic therapies. 

This strategy has been successfully tested in the EAGLE trial, which demonstrated an 

increased detection of reduced ejection fraction in a primary care setting with AI-ECG.61 

Furthermore, there is also room for the integration of these algorithms in mobile devices 

and wearables. Their ability to detect AF was demonstrated in the Apple Heart Study.62 
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2.2 Image acquisition, segmentation, and analysis 
Artificial intelligencemodels can systematize the acquisition, processing, and 

interpretation of both invasive and non-invasive cardiovascular images to boost 

diagnostic accuracy and reduce interobserver/interscan variability. Mor-Avi et al. 

demonstrated that an AI-embedded imaging tool can help novices acquire similar quality 

images to expert sonographers by providing instant feedback on the images’ diagnostic 
quality and suggesting specific gestures to mend it in real-time.63 Whereas software like 

Us2.AI© (Us2.AI, Singapore) can produce a complete report with accurate measurements 

and guideline-based interpretation of ultrasound images.64 Operator-dependency is one of 

imaging’s main pitfalls. A paradigmatic example of this is the visual assessment of 

coronary stenosis.65,66 Automatic registration and segmentation of angiography images 

has been shown to reduce interobserver variability and improve the operators’ estimation 
of lesion severity, thus refining patient/lesion selection for revascularization.67-70 

Moreover, AI-driven analysis can also obviate the need for further testing. For example, 

fractional flow reserve and instantaneous wave-free ratio derived from both invasive and 

non-invasive coronary angiography may abridge the need to use a pressure wire or 

invasive angiography all-together.71-74 Lastly, AI-based systems can also accurately 

merge different imaging modalities to create high-fidelity three-dimensional (3D) 

reconstructions of different structures that can improve our understanding of complex 

anatomies, assist procedural planning and guide interventions in real-time. The best-

known example is probably the EchoNavigator® (Philips, The Netherlands) software that 

fuses fluoroscopy and echocardiography images to enhance the perception of the position 

of the catheters and devices being deployed relative to the surrounding heart structures.75 

 

2.3 Natural language processing and chatbots 

Electronic health records are increasingly recognized as a powerful tool to enhance the 

quality of medical care and clinical research.76 However, a significant portion of EHR 

involves free text that is not readily accessible for data abstraction and the intricate nature 

of plain language makes conventional rule-based methods prone to misclassification and 

bias.77 Deep learning-based natural language processing (NLP) models are emerging as 

more dependable alternatives to interrogate large volumes of free text and leverage its’ 
data for predictive analytics78, patient identification/recruitment,79 among others. HF with 

preserved ejection fraction (HFpEF) is a challenging and often-missed diagnosis. 

Recently, a group from King’s College London used an NLP pipeline to identify patients 
who were likely to have HFpEF.80 While only 311 patients (8.3%) had a formal clinical 

diagnosis of HFpEF, the NLP model identified 2811 more patients (75.4%) who met 

diagnostic criteria from the European guidelines.80 Although this group was younger and 

had fewer comorbidities, a higher five-year mortality rate was observed.80 

In addition to understanding natural language, these models also produce it, usually in the 

form of chatbots. Two main capabilities of these chatbots apply to the medical field.81 

The first is their ability to act as a scribe and produce clinical notes based on the transcript 

of the physician-patient encounter. The clinician still must proofread the chatbot’s output, 
but a significant portion of the process is done automatically.81 Secondly, and more 

broadly, the ability to analyze the patient’s data and come up with a diagnosis and 
treatment plan. In this case, the bots’ answer would be viewed as a ‘second opinion’, 
either validating one’s decision or prompting revision or further investigation when there 

is no consensus. Although current iterations are far from being able to provide such 

support, this is the ultimate goal.82 
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2.4 Risk prediction and deep phenotyping 
Whereas traditional risk scoring systems only incorporate a limited set of variables, AI 

algorithms can integrate all physiologic information available for that patient. Between 

EHR, biobanks, imaging and ECG repositories, there is a wealth of data available to 

characterize each patients’ phenotype, determine individual risk of adverse outcomes, and 

the likelihood of suitable treatment response. HFpEF affects a very diverse group of 

patients. This heterogeneity has been proposed as one of the likely contributors to the 

multiple neutral trials in this patient subset.83 Hence, it has been a major focal point of 

several ‘phenomapping’ studies. Based on the TOPCAT cohort, Segar and colleagues 
used a finite mixture-model-based clustering to identify three phenogroups of HFpEF 

patients with distinct long-term outcomes.84 Patients in phenogroup one had significantly 

worse cardiometabolic features (higher body mass index, higher burden of diabetes 

mellitus, dyslipidemia, etc.) and outcomes, including all-cause mortality.84 Also within 

the HF sphere, similar approaches have been used, for example, to forecast the risk of 

rehospitalization85 and response to cardiac resynchronization therapy.86,87 From an 

adaptive boosting model, the PRAISE authors derived a score to predict major events 

(all-cause death, myocardial infarction, and major bleeding) at one-year post-acute 

coronary syndrome.88 

 

3. Simulations 

Computational, extended reality and high-fidelity bench simulations are emerging 

precision medicine enablers. These simulations allow for testing of virtually infinite 

treatment strategies in a timely and cost-effective way with zero risk for the patient. 

Potential applications include procedural planning/decision support, training, and 

research.89 

 

3.1 Procedural planning and guidance 
Patient-specific simulations of different devices and/or procedures may help determine 

device size, optimal implantation technique, as well as predict the likelihood of future 

complications. For example, in left atrial appendage closure the incidence of peri-device 

leaks is not negligible and a recent meta-analysis found that, regardless of size, residual 

leaks detected by transesophageal echocardiography were associated with higher risk of 

thromboembolism, major bleeding, and all-cause mortality.90 Patient-specific 3D printing 

and computational modeling techniques may be useful to determine optimal device 

position and size.90,91 The recent PREDICT-LAA trial tested this strategy via 

HEARTguide (FEops, Belgium), a digital twin generator.92 Although the trial did not 

meet its primary endpoint (presence of grade 3-4 leak and/or device related thrombus) a 

trend toward less appendage patency and a significantly higher complete closure rate were 

observed. A similar software (TAVIguide, FEops, Belgium) has been tested in 

transcatheter aortic valve implantation (TAVI) planning.93 While it did not have a 

significant effect on valve sizing, it did affect the target depth of implantation. Future 

iterations may help abate other TAVI pitfalls (paravalvular leaks and conduction 

abnormalities).93 

Regarding procedural guidance per se, we highlight the possible use of extended reality 

to guide catheter ablation (CommandEP™, SentiAR Inc., United States of America)94 

and vascular access either as a stand-alone tool95 or in combination with ultrasound.96,97 

Potential advantages include better ergonomics, improved accuracy, less damage to 

adjacent tissues and lower radiation exposure.95-97 
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Although promising, thus far, most of the evidence in this area comes from relatively 

small proof-of-concept studies that are insufficient for now to support their systematic 

use to guide decision-making and improve clinical outcomes. 

 

3.2 Education and training 

Simulations can also play a significant role in education and training. Extended reality 

and high-fidelity bench simulations may improve trainees’ understanding of complex 

anatomies/clinical scenarios and provide a safe and reproducible training environment 

before engaging in actual patient management.23,98 Small prospective trials have shown 

simulation training’s positive influence on trainee-centered outcomes consistently across 

several procedures in the CV sphere. Young et al. showed that simulation-trained fellows 

performed better on intra-aortic balloon pump and transvenous pacing placement.99 De 

Ponti and colleagues obtained similar results for transeptal puncture100 and catheter 

placement, with the added benefit of reduced fluoroscopy times.101 Despite being 

increasingly recognized as a valuable teaching method,102 its systematic incorporation in 

CV training programs is still rare. Lack of dedicated training time, good quality 

equipment and funding are some of the barriers preventing the shift toward simulation-

enhanced education.103 

 

3.3 In silico clinical trials and digital twins 

Computer simulations are also evolving as a tool to evaluate the safety and efficacy of 

new drugs, devices, or procedures. They outperform conventional studies in terms of cost, 

allotted time, need for the use of animal models and patient representativeness. Hence, 

major regulatory bodies, such as the United States’ Food and Drug Administration (FDA), 

now support the use of these novel approaches throughout the life cycle of CV 

interventions, from prototyping to post-market surveillance, to inform better clinical 

trials.104 Recently, Aguado-Sierra et al. validated Alya (ELEM Biotech, Spain), a 

computational platform to perform in silico/virtual cardiac trials.105 For example, using 

hydroxychloroquine and azithromycin, they evaluated the platform’s ability to assess 
different drugs’ proarrhythmic potential and the results were very close to those of 
traditional clinical trials (21% vs 21.8%). 

In silico clinical trials are essentially an extension of the above-mentioned ‘digital twin’ 
concept.25 Digital twins’ main applications are individual risk prediction and tailored 
decision support (all available management options can be tested on the digital twin first 

to select the best possible one). This technology is relatively new and evidence for 

improved outcomes is lacking. Proof-of-concept studies, such as the Virtual-heart 

Arrhythmia Risk Predictor (VARP) study used virtual heart models to stratify post-

infarction arrhythmia risk.106 The model’s risk assessment was superior to current metrics 
and has the potential to refine patient selection for implantable cardioverter-defibrillators. 

Regarding treatment strategies specifically, a group from the Cleveland Clinic is running 

a randomized controlled trial (NCT05181449) to determine whether a digital twin-based 

treatment plan could improve blood glucose control and, possibly, lead to disease 

remission in patients with type 2 diabetes. 

 

4. Robotics 

The use of medical robots has been steadily rising, particularly in the surgical field, due 

to their potentially lower invasiveness and high precision.107 Initial experience in the 

cardiovascular field mainly concerned minimally invasive cardiac surgeries, such as 

coronary artery bypass grafting and mitral valve repair.108,109 Nonetheless, there is 

increasing interest in using these devices in electrophysiology, structural and coronary 
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interventions to streamline procedures and reduce occupational hazards, such as radiation 

exposure and musculoskeletal strain.110 Small clinical studies, such as the PRECISE and 

CORA-PCI studies have demonstrated feasibility and safety in increasingly complex 

anatomies.111,112 A 2021 meta-analysis of 13 studies (1348 patients) comparing the 

standard approach and magnetic navigation system-guided ventricular tachycardia 

ablation showed higher early success rates, less complications and reduced fluoroscopy 

time with the latter.113 Likewise, in a propensity-score analysis from a Portuguese cohort, 

magnetic AF ablation required significantly less fluoroscopy time to achieve similar 

procedural results.114 Robust data, with large-scale randomized controlled trials, is 

lacking though. Regarding future perspectives, AI-driven robotics is likely the next step 

for enhanced precision and efficiency.89 The same applies to the imaging domain, where 

robots are bound to democratize access to echocardiography.115 

 

Implementation into clinical practice – roadblocks and limitations 

Healthcare’s digital transformation has been hampered by several factors that require 

addressing to ensure we leverage DHIs full potential. This was the main focal point of 

recent position statements by the European Society of Cardiology, World Heart 

Federation, American College of Cardiology and American Heart Association.5,16,116,117 

Based on their frameworks we have summarized some digital health-related challenges, 

as well as proposed solutions in Table 2. 

Technical considerations 

The algorithms we previously mentioned are only as good as the data they are trained on. 

First, any intrinsic biases on the training dataset (e.g. exclusion of an ethnic group, 

different image acquisition protocols, conflicting data annotation) will negatively affect 

the models’ output and lead to false generalizations.118 To minimize this risk, the 

algorithms must be tested on multiple independent datasets and carefully monitored for 

any partialities to ensure accurate representation of the population they are intended for.118 

Second, another common criticism to this sort of models is the lack of ‘interpretability’ 
and ‘explainability’, the so-called black-box AI. A significant portion of AI algorithms 

do not provide insight on how they arrived at a given conclusion, preventing proper 

reliability assessment.119 To address this concerns, major efforts are being made to ‘open 
the black box’ and/or construct intrinsically explainable/interpretable algorithms (e.g. 
ECG heatmaps).119 Third, these systems often require large datasets (big data) for training 

and validation. Although the data exists, it is often not accessible and/or of subpar quality. 

Heterogeneous data collection and storage methods, lack of universal quality control 

metrics and issues regarding data ownership render a significant portion of available data 

unusable. In 2022, the European Commission published a regulation proposal 

(52022PC0197) to create a European Health Data Space which will hopefully improve 

health information structures within the European Union and help mitigate some of these 

limitations.120 Fourth, patient-specific simulations are time-consuming. Advanced 

computing (e.g. supercomputers, computer clusters or quantum computing) will likely be 

needed to provide real-time guidance, which could entail a substantial financial burden.121 

In this regard, cost-effectiveness studies should not be overlooked. 

In an effort to minimize the aforementioned biases and raise the quality of cardiovascular 

AI-based studies, the European Heart Journal recently published an article 

recommending careful consideration of five major quality criteria: reproducibility, clear 

identification of intended use, appropriate sample sizes, software/code availability, and 
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rigorous internal and external validation.122 These guidelines were developed specifically 

for AI-based products, but their principals also apply to other DHI. 

 

End user-related barriers 

A 2021 systematic scoping review found that difficult-to-use tools, poor internet 

connection, and fear of using technology were the most common patient-level barriers, 

followed by impersonal care delivery, user characteristics (e.g. older age, cognitive 

impairment, language, values, socioeconomic status, etc.), time spent, and technical 

concerns.17 On the other hand, physician-related barriers included perceived increase in 

workload, weak interoperability, unclear benefits, cybersecurity issues, and financial 

concerns.17 In many cases, development of DHI is not based on the end user’s 
expectations and necessities (i.e. patients and physicians). Their involvement in the 

research and development stage is rare with implications on their acceptance and 

usability. A multidisciplinary effort among all stakeholders (patients, clinicians, 

developers, ethicists, industry, and regulatory/governmental agencies, etc.) should 

facilitate the creation of user-friendly tools.17 Additionally, DHI implementation should 

be supported by education programs for patients, caregivers, healthcare professionals and 

students alike to demystify these novel care pathways and assist them throughout the 

whole process.123 The lack of integration of DHI into existing systems and processes can 

be a major deterrent to their use.124 If not fully incorporated into current workflows they 

will increase the workload rather than lighten it. Therefore, clinician engagement will 

largely be dependent on the interoperability of DHI. As previously mentioned, most of 

the evidence in this area comes from small observational studies.125 Large clinical trials 

focusing on hard outcomes, such as the ongoing HEARTLINE study (NCT04276441), 

are warranted to increase end user’s confidence in these tools. Low socioeconomic status 
may be the hardest hurdle to overcome in DHI adoption. The development of appropriate 

reimbursement models for DHI and expansion of internet coverage and speed are key to 

ensure equitable access.126 In spite of these challenges, a recent nationwide cross-

sectional survey found that, in general, Portuguese cardiovascular healthcare 

professionals have a positive outlook on these tools and are welcoming of the digital 

transformation.127 Likewise, these technologies are usually very well received by the 

patients. For example, satisfaction levels with the MESSAGE-HF monitoring strategy 

were excellent (net promoting score at 180 days: 78.5).47 Nevertheless, clinical outcomes 

were not improved. 

 

Ethical and legal concerns 
Testing and use of DHI raises several complex ethical and legal questions about 

confidentiality and liability. As previously stated, the development and implementation 

of DHI in clinical practice requires the exchange and analysis of sensitive data. Therefore, 

strong regulatory oversight is required to ensure data minimization for the intended use 

and proper anonymization, following the applicable directives, namely the European 

Union’s General Data Protection Regulation (32016R0679)128 and the Privacy and 

Electronics Communication Directive (02002L0058-20091219)129. Recently, the 

European Council and Parliament published the first regulatory framework for safe AI 

utilization, the AI Act. It defines four risk categories: unacceptable, high, limited, and 

minimal or no risk. Systems that meet the unacceptability criteria will be prohibited. 

Among the remaining categories, the higher the risk the stricter the legal requirements 

and supervision. Another key point of discussion relates to what will happen when DHIs 

fail and the associated legal conundrums. For example, in a case of ECG 

misinterpretation, would legal liability for an unintended complication be distributed 
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between the physician and the software developer/distributer? In the case of a data privacy 

breech in a mobile phone app, who is accountable? The software developer, the cloud 

management service, the healthcare system/institution? Others? All the above? These are 

just some of the questions that may arise. Accountability issues should be explored to 

establish legal liability upfront. 

On another note, the DHI regulatory landscape is still not fully established. Both the 

European Medicines Agency and the FDA have published guidelines and regulations on 

their classification and certification. However, in this ever-growing field, regulations will 

need to evolve continuously to ensure they are fit to deal with the growing demands. Of 

note, the number of DHI that reaches the “market” is significantly lower than the number 

of developed DHI. This may be (at least partially) explained by the long and taxing 

bureaucratic process. In an attempt to lessen this burden, the FDA created the Digital 

Health Center of Excellence Services which is meant to guide stakeholders through the 

process and facilitate timely certification. 

 

Digital health in cardiovascular medicine – where next? 

Despite these limitations, digital health is bound to revolutionize CV care. According to 

the American Medical Association’s Playbook, the key steps to implement a DHI are: 1) 

Identify a need; 2) Construct a team; 3) Define success/goals; 4) Select the right 

technology; 5) Get funding; 6) Budget; 7) Workflow integration/design; 8) Care team 

preparation/education; 9) Patient engagement; 10) Implementation; 11) Evaluation; 12) 

Scaling.130,131 Nonetheless, many challenges remain, particularly in ensuring data quality 

and security, and dealing with variations that impact the effectiveness of DHI. These 

issues highlight the need for continuous research and cooperation among a diverse group 

of stakeholders, such as medical professionals, engineers, and patients. Addressing these 

challenges demands standardized data formats, strong encryption for privacy, 

interpretability to foster trust, extensive training, and improved collaboration among 

stakeholders. In summary, in ChatGPT’s (OpenAI, USA) words: “The fusion of digital 
technologies with cardiovascular medicine is reshaping healthcare, offering real-time 

monitoring and personalized treatment plans. This integration has revolutionized 

diagnosis, management, and prevention of cardiovascular diseases, leveraging wearable 

devices, advanced imaging, and telemedicine. However, challenges like data security, 

interoperability, and ethical concerns persist, necessitating careful navigation. The future 

of cardiovascular digital health hinges on collaborative efforts to address these obstacles 

and ensure widespread access to innovative technologies. The direction it takes relies on 

collective commitment from healthcare professionals, technology developers, and 

policymakers to navigate complexities and ensure progress.” 

 

CONCLUSION 

Cardiology is undergoing a remarkable transformation, with digital health playing a 

pivotal role in reshaping CV disease prevention, diagnosis, and management. These 

technologies will help deliver high-quality patient-centered care in a timely, equitable and 

cost-conscious way. However, as with any other medical tool, they must withstand 

rigorous testing and validation before integrating a contemporary cardiologist’s 
armamentarium. 
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TABLES 

Table 1. Examples of digital health interventions 

INTERVENTION DEFINITION  

Telemedicine/ 

Telehealth 

The act of providing clinical care at a distance (e.g. 

teleconsultation, remote patient monitoring, teleconsulting, 

teleradiology, telerehabilitation)18,19 

Electronic health 

records 

Digitized records used to gather, store, access and share patient 

information. Ideally, these systems are integrated in 

regional/national information networks and include e-referrals 

and e-prescribing platforms18,19 

Clinical decision 

Support Tools 

Systems that combine patient data with clinical 

protocols/guidelines to assist diagnostic and management 

choices18,19 

Mobile health 

(m-Health) 

Use of mobile technologies, such as ‘wearables’ and ‘apps’, to 
track personal health, provide diagnostic and treatment support, 

promote medication compliance, etc.18 

Big data Large-scale data collection and analysis from heterogenous 

sources (e.g., electronic health records, imaging, biobanks, etc.), 

linked at the individual-patient level20 

Precision 

medicine 

Tailored medical care21 

Artificial 

intelligence 

General term for the use of algorithms to emulate and automate 

cognitive functions, such as learning, reasoning, decision-

making, problem solving, and self-correction. It includes 

machine learning, deep learning, natural language processing, 

image analysis, among others.22 

Simulations Recreation of a real-world process or system through physical or 

computational models. Includes bench, ex vivo, extended reality 

and computational simulations.21 

Extended reality A simulated experience where the user is either interacting with 

virtual objects in the real-world environment (augmented 

reality), fully immersed in a computer-generated world (virtual 

reality), or both (mixed reality).23 

In silico/Virtual 

clinical trials 

Use of computational simulations to test the safety and efficacy 

of drugs, devices, or interventions24 

Digital twins When applied to healthcare, digital twins are patient-specific 

system/organ/whole-body computational models created and 

updated in real-time using data from their real-world 

counterparts.25 
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Table 2. Examples of digital health-related roadblocks and potential solutions 

 Roadblocks Potential Solutions 

Technical 

considerations 
 Limited real-time 

applicability 

 Subpar datasets 

o Lack of standardized 
data collection and 
storage protocols 

o Biased data 

o Variable image 
segmentation and 
annotation between 
experts 

 Supercomputers, computer 
clusters, quantum computers 

 Data standardization and 
harmonization 

 Big data 

 Training and testing on 
multiple independent 
datasets, granted they are 
representative of the target 
population 

 Automation of image labeling 

End user-related 

barriers 
 Limited digital health 

literacy and skills 

 Poor usability 

 Lack of interoperability 

 Lack of perceived 
effectiveness 

 Education programs for 
patients and healthcare 
professionals 

 End user involvement in the 
development stage; co-
designing of novel care 
pathways 

 Integration of DHIs into 
existing workflows 

 Large-scale trials to 
demonstrate DHI accuracy 
and impact on outcomes 

Legal and ethical 

issues 
 Confidentiality and 

privacy 

 Liability and 
accountability  

 Mandatory compliance with 
data protection regulations 

 Promote ethical research and 
development pathways 

 Develop regulatory 
frameworks to support the 
approval and post-market 
surveillance of DHIs 

Financial 

constraints 
 High cost of advanced 

computing power and 
specialty devices 

 Lack of reimbursement 

 Cost-effectiveness studies 

 Inclusion of DHIs in 
reimbursement models and 
insurance coverage 

DHI: Digital health intervention 
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FIGURES 

 

Figure 1. Trends over time in digital health-related articles published in PubMed between 

2010 and 2023. This figure shows the results of a PubMed search conducted for different 

digital health-related terms (e.g. “(cardiology) AND (machine learning)”). 

Figure 2. Machine Learning techniques and their application (non-exhaustive).  

ANN: artificial neural Network; DBSCAN: density-based spatial clustering of 

application with noise; k-NN: k-Nearest neighbors; SVM: support vector machine. 
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Supervised learning

(make predictions based on 

labeled data: dependent variable 

is known)

Regression (quantitative dependent variable)

[linear and non-linear regression, k-NN, Decision 

Trees, etc.] 

Classification (qualitative dependent variable)

[k-NN, Decision Trees, SVM, ANN, etc.]

Unsupervised learning

(discover patterns in unlabeled 

data: dependent variable is 

unknown)

Clustering

[k-Means, Mean-Shift, DBSCAN, Hierarchical 

Algorithm, etc.]

Dimensionality reduction

[feature selection, feature  extraction, etc.]

Reinforcement learning

(decision making: learns through 

trial and error with reward or 

punishment before each 

repetition)

[Q-Learning, Temporal difference, Value Iteration, 

Markov decision]


